Multimodal Online Federated Learning with Modality Missing in Internet of Things
- URL: http://arxiv.org/abs/2505.16138v1
- Date: Thu, 22 May 2025 02:31:37 GMT
- Title: Multimodal Online Federated Learning with Modality Missing in Internet of Things
- Authors: Heqiang Wang, Xiang Liu, Xiaoxiong Zhong, Lixing Chen, Fangming Liu, Weizhe Zhang,
- Abstract summary: Internet of Things (IoT) ecosystem generates vast amounts of multimodal data from heterogeneous sources such as sensors, cameras, and microphones.<n>As edge intelligence continues to evolve, IoT devices have progressed from simple data collection units to nodes capable of executing complex computational tasks.<n>We introduce the concept of Multimodal Online Federated Learning (MMO-FL), a novel framework designed for dynamic and decentralized multimodal learning in IoT environments.
- Score: 22.814768356671276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things (IoT) ecosystem generates vast amounts of multimodal data from heterogeneous sources such as sensors, cameras, and microphones. As edge intelligence continues to evolve, IoT devices have progressed from simple data collection units to nodes capable of executing complex computational tasks. This evolution necessitates the adoption of distributed learning strategies to effectively handle multimodal data in an IoT environment. Furthermore, the real-time nature of data collection and limited local storage on edge devices in IoT call for an online learning paradigm. To address these challenges, we introduce the concept of Multimodal Online Federated Learning (MMO-FL), a novel framework designed for dynamic and decentralized multimodal learning in IoT environments. Building on this framework, we further account for the inherent instability of edge devices, which frequently results in missing modalities during the learning process. We conduct a comprehensive theoretical analysis under both complete and missing modality scenarios, providing insights into the performance degradation caused by missing modalities. To mitigate the impact of modality missing, we propose the Prototypical Modality Mitigation (PMM) algorithm, which leverages prototype learning to effectively compensate for missing modalities. Experimental results on two multimodal datasets further demonstrate the superior performance of PMM compared to benchmarks.
Related papers
- On-device edge learning for IoT data streams: a survey [1.7186863539230333]
This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs)<n>We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge)<n>The survey details the challenges of deploying deep learners on resource-constrained edge devices.
arXiv Detail & Related papers (2025-02-25T02:41:23Z) - A Low-Complexity Plug-and-Play Deep Learning Model for Massive MIMO Precoding Across Sites [5.896656636095934]
MMIMO technology has transformed wireless communication by enhancing spectral efficiency and network capacity.<n>This paper proposes a novel deep learning-based mMIMO precoder to tackle the complexity challenges of existing approaches.
arXiv Detail & Related papers (2025-02-12T20:02:36Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Exploring Missing Modality in Multimodal Egocentric Datasets [89.76463983679058]
We introduce a novel concept -Missing Modality Token (MMT)-to maintain performance even when modalities are absent.
Our method mitigates the performance loss, reducing it from its original $sim 30%$ drop to only $sim 10%$ when half of the test set is modal-incomplete.
arXiv Detail & Related papers (2024-01-21T11:55:42Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - A Federated Learning Approach to Anomaly Detection in Smart Buildings [5.177947445379688]
We formulate the anomaly detection problem in a federated learning setting by leveraging the multi-task learning paradigm.
We propose a novel privacy-by-design federated learning model using a stacked long short-time memory (LSTM) model.
We demonstrate that it is more than twice as fast during training convergence compared to the centralized LSTM.
arXiv Detail & Related papers (2020-10-20T14:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.