On-device edge learning for IoT data streams: a survey
- URL: http://arxiv.org/abs/2502.17788v1
- Date: Tue, 25 Feb 2025 02:41:23 GMT
- Title: On-device edge learning for IoT data streams: a survey
- Authors: Afonso Lourenço, João Rodrigo, João Gama, Goreti Marreiros,
- Abstract summary: This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs)<n>We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge)<n>The survey details the challenges of deploying deep learners on resource-constrained edge devices.
- Score: 1.7186863539230333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs) for classification tasks on smart environments. We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge), which impact TinyML algorithm design, due to the uncontrolled natural arrival of data streams. The survey details the challenges of deploying deep learners on resource-constrained edge devices, including catastrophic forgetting, data inefficiency, and the difficulty of handling IoT tabular data in open-world settings. While decision trees are more memory-efficient for on-device training, they are limited in expressiveness, requiring dynamic adaptations, like pruning and meta-learning, to handle complex patterns and concept drifts. We emphasize the importance of multi-criteria performance evaluation tailored to edge applications, which assess both output-based and internal representation metrics. The key challenge lies in integrating these building blocks into autonomous online systems, taking into account stability-plasticity trade-offs, forward-backward transfer, and model convergence.
Related papers
- FLARE: Feature-based Lightweight Aggregation for Robust Evaluation of IoT Intrusion Detection [0.0]
Internet of Things (IoT) devices have expanded the attack surface, necessitating efficient intrusion detection systems (IDSs) for network protection.
This paper presents FLARE, a feature-based lightweight aggregation for robust evaluation of IoT intrusion detection.
We employ four supervised learning models and two deep learning models to classify attacks in IoT IDS.
arXiv Detail & Related papers (2025-04-21T18:33:53Z) - Explainability and Continual Learning meet Federated Learning at the Network Edge [4.348225679878919]
We discuss novel optimization problems that emerge in distributed learning at the network edge with wirelessly interconnected edge devices.
Specifically, we discuss how Multi-objective optimization (MOO) can be used to address the trade-off between predictive accuracy and explainability.
We also discuss the implications of integrating inherently explainable tree-based models into distributed learning settings.
arXiv Detail & Related papers (2025-04-11T13:45:55Z) - Sky of Unlearning (SoUL): Rewiring Federated Machine Unlearning via Selective Pruning [1.6818869309123574]
Federated learning (FL) enables drones to train machine learning models in a decentralized manner while preserving data privacy.
Federated unlearning (FU) mitigates these risks by eliminating adversarial data contributions.
This paper proposes sky of unlearning (SoUL), a federated unlearning framework that efficiently removes the influence of unlearned data while maintaining model performance.
arXiv Detail & Related papers (2025-04-02T13:07:30Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Adaptive Hybrid Model Pruning in Federated Learning through Loss Exploration [17.589308358508863]
We introduce AutoFLIP, an innovative approach that utilizes a federated loss exploration phase to drive adaptive hybrid pruning.
We show that AutoFLIP not only efficiently accelerates global convergence, but also achieves superior accuracy and robustness compared to traditional methods.
arXiv Detail & Related papers (2024-05-16T17:27:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
An edge server and numerous mobile devices (clients) jointly learn a global model without transporting huge amount of data collected by the mobile devices to the edge server.
The proposed FL approach exploits spatial and temporal correlations between learning updates from different mobile devices scheduled to join STFL in various trainings.
An analytical framework of STFL is proposed and employed to study the learning capability of STFL via its convergence performance.
arXiv Detail & Related papers (2021-10-27T16:46:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
Federated learning is capable of analyzing the large amount of data from a distributed set of smart devices without requiring them to upload their data to a central place.
This paper proposes a novel federated learning framework called DP-PASGD for training a machine learning model efficiently from the data stored across resource-constrained smart devices in IoT.
arXiv Detail & Related papers (2020-03-28T04:32:54Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.