NAN: A Training-Free Solution to Coefficient Estimation in Model Merging
- URL: http://arxiv.org/abs/2505.16148v1
- Date: Thu, 22 May 2025 02:46:08 GMT
- Title: NAN: A Training-Free Solution to Coefficient Estimation in Model Merging
- Authors: Chongjie Si, Kangtao Lv, Jingjing Jiang, Yadao Wang, Yongwei Wang, Xiaokang Yang, Wenbo Su, Bo Zheng, Wei Shen,
- Abstract summary: We show that the optimal merging weights should scale with the amount of task-specific information encoded in each model.<n>We propose NAN, a simple yet effective method that estimates model merging coefficients via the inverse of parameter norm.<n>NAN is training-free, plug-and-play, and applicable to a wide range of merging strategies.
- Score: 61.36020737229637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model merging offers a training-free alternative to multi-task learning by combining independently fine-tuned models into a unified one without access to raw data. However, existing approaches often rely on heuristics to determine the merging coefficients, limiting their scalability and generality. In this work, we revisit model merging through the lens of least-squares optimization and show that the optimal merging weights should scale with the amount of task-specific information encoded in each model. Based on this insight, we propose NAN, a simple yet effective method that estimates model merging coefficients via the inverse of parameter norm. NAN is training-free, plug-and-play, and applicable to a wide range of merging strategies. Extensive experiments on show that NAN consistently improves performance of baseline methods.
Related papers
- Dynamic Fisher-weighted Model Merging via Bayesian Optimization [37.02810891820468]
Existing merging approaches typically involve scaling the parameters model-wise or integrating parameter importance parameter-wise.<n>We unify these strategies into a more general merging framework, and introduce Dynamic Fisher-weighted Merging (DF-Merge)<n>We show that DF-Merge outperforms strong baselines across models of different sizes and a variety of tasks.
arXiv Detail & Related papers (2025-04-26T18:31:14Z) - Leveraging Submodule Linearity Enhances Task Arithmetic Performance in LLMs [51.09983600916971]
Recent research indicates that models demonstrating linearity enhance the performance of task arithmetic.<n>We argue that this linearity already exists within the model's submodules.<n>We propose an innovative model merging strategy that independently merges these submodules.
arXiv Detail & Related papers (2025-04-15T06:23:24Z) - LEWIS (LayEr WIse Sparsity) -- A Training Free Guided Model Merging Approach [0.0]
LEWIS (Layer Wise Sparsity) is a guided model-merging framework.<n>It guides existing merging methods by preserving essential layer-wise task-specific knowledge.<n>Experiments demonstrate the effectiveness of LEWIS with performance improvements of code instruction-following and math-solving models.
arXiv Detail & Related papers (2025-03-05T20:09:59Z) - Parameter Efficient Merging for Multimodal Large Language Models with Complementary Parameter Adaptation [17.39117429338763]
We propose CoPA-Merging, a training-free parameter efficient merging method with complementary parameter adaptation.<n>We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certificate the outstanding performance and generalizability of our method.
arXiv Detail & Related papers (2025-02-24T13:52:05Z) - Mixup Model Merge: Enhancing Model Merging Performance through Randomized Linear Interpolation [15.47711837051754]
We propose Mixup Model Merge, an innovative approach inspired by the Mixup data augmentation technique.<n>M$3$ is a simple yet effective model merging method that significantly enhances the performance of the merged model.
arXiv Detail & Related papers (2025-02-21T13:01:26Z) - LoRE-Merging: Exploring Low-Rank Estimation For Large Language Model Merging [10.33844295243509]
We propose a unified framework for model merging based on low-rank estimation of task vectors without the need for access to the base model, named textscLoRE-Merging.<n>Our approach is motivated by the observation that task vectors from fine-tuned models frequently exhibit a limited number of dominant singular values, making low-rank estimations less prone to interference.
arXiv Detail & Related papers (2025-02-15T10:18:46Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [72.10987117380584]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.<n>We find existing methods discard task-specific information that, while causing conflicts, is crucial for performance.<n>Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)<n>MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.<n>We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
We introduce a fundamentally different method for transferring knowledge across models that amounts to "merging" multiple models into one.
Our approach effectively involves computing a weighted average of the models' parameters.
We show that our merging procedure makes it possible to combine models in previously unexplored ways.
arXiv Detail & Related papers (2021-11-18T17:59:35Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.