Erased or Dormant? Rethinking Concept Erasure Through Reversibility
- URL: http://arxiv.org/abs/2505.16174v1
- Date: Thu, 22 May 2025 03:26:46 GMT
- Title: Erased or Dormant? Rethinking Concept Erasure Through Reversibility
- Authors: Ping Liu, Chi Zhang,
- Abstract summary: We evaluate two representative concept erasure methods, Unified Concept Editing and Erased Stable Diffusion.<n>We show that erased concepts often reemerge with substantial visual fidelity after minimal adaptation.<n>Our findings reveal critical limitations in existing concept erasure approaches.
- Score: 8.454050090398713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To what extent does concept erasure eliminate generative capacity in diffusion models? While prior evaluations have primarily focused on measuring concept suppression under specific textual prompts, we explore a complementary and fundamental question: do current concept erasure techniques genuinely remove the ability to generate targeted concepts, or do they merely achieve superficial, prompt-specific suppression? We systematically evaluate the robustness and reversibility of two representative concept erasure methods, Unified Concept Editing and Erased Stable Diffusion, by probing their ability to eliminate targeted generative behaviors in text-to-image models. These methods attempt to suppress undesired semantic concepts by modifying internal model parameters, either through targeted attention edits or model-level fine-tuning strategies. To rigorously assess whether these techniques truly erase generative capacity, we propose an instance-level evaluation strategy that employs lightweight fine-tuning to explicitly test the reactivation potential of erased concepts. Through quantitative metrics and qualitative analyses, we show that erased concepts often reemerge with substantial visual fidelity after minimal adaptation, indicating that current methods suppress latent generative representations without fully eliminating them. Our findings reveal critical limitations in existing concept erasure approaches and highlight the need for deeper, representation-level interventions and more rigorous evaluation standards to ensure genuine, irreversible removal of concepts from generative models.
Related papers
- When Are Concepts Erased From Diffusion Models? [44.89615668122767]
Concept erasure is the ability to selectively prevent a model from generating specific concepts.<n>We propose two conceptual models for the erasure mechanism in diffusion models.<n>To thoroughly assess whether a concept has been truly erased from the model, we introduce a suite of independent evaluations.
arXiv Detail & Related papers (2025-05-22T17:59:09Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
This research introduces continual unlearning', a novel paradigm that enables the targeted removal of multiple specific concepts from foundational generative models.<n>We propose Decremental Unlearning without Generalization Erosion (DUGE) algorithm which selectively unlearns the generation of undesired concepts.
arXiv Detail & Related papers (2025-03-17T23:17:16Z) - Fantastic Targets for Concept Erasure in Diffusion Models and Where To Find Them [21.386640828092524]
Concept erasure has emerged as a promising technique for mitigating the risk of harmful content generation in diffusion models.<n>We propose the Adaptive Guided Erasure (AGE) method, which emphdynamically selects optimal target concepts tailored to each undesirable concept.<n>Results show that AGE significantly outperforms state-of-the-art erasure methods on preserving unrelated concepts while maintaining effective erasure performance.
arXiv Detail & Related papers (2025-01-31T08:17:23Z) - EraseBench: Understanding The Ripple Effects of Concept Erasure Techniques [20.2544260436998]
Concept erasure techniques can remove unwanted concepts from text-to-image models.<n>We systematically investigate the failure modes of current concept erasure techniques.<n>We introduce EraseBENCH, a benchmark designed to assess concept erasure methods with greater depth.<n>Our findings reveal that even state-of-the-art techniques struggle with maintaining quality post-erasure, indicating that these approaches are not yet ready for real-world deployment.
arXiv Detail & Related papers (2025-01-16T20:42:17Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
We introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning.
To mitigate inappropriate content potentially represented by derived embeddings, RECE aligns them with harmless concepts in cross-attention layers.
The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts.
arXiv Detail & Related papers (2024-07-17T08:04:28Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.<n>The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.<n> concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
We propose a novel concept domain correction framework named textbfDoCo (textbfDomaintextbfCorrection)<n>By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts.<n>We also introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept.
We propose Reliable Concept Erasing via Lightweight Erasers (Receler)
arXiv Detail & Related papers (2023-11-29T15:19:49Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.