論文の概要: QuickVideo: Real-Time Long Video Understanding with System Algorithm Co-Design
- arxiv url: http://arxiv.org/abs/2505.16175v1
- Date: Thu, 22 May 2025 03:26:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.010626
- Title: QuickVideo: Real-Time Long Video Understanding with System Algorithm Co-Design
- Title(参考訳): QuickVideo:システムアルゴリズムの共同設計によるリアルタイムビデオ理解
- Authors: Benjamin Schneider, Dongfu Jiang, Chao Du, Tianyu Pang, Wenhu Chen,
- Abstract要約: ビデオ監視、会議要約、教育講義分析、スポーツ放送といった現実の応用において、ロングビデオ理解が重要な機能として現れてきた。
我々は,リアルタイムダウンストリームアプリケーションをサポートするために,長時間ビデオ理解を大幅に高速化するシステムアルゴリズムの共同設計であるQuickVideoを提案する。
- 参考スコア(独自算出の注目度): 54.38970077613728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-video understanding has emerged as a crucial capability in real-world applications such as video surveillance, meeting summarization, educational lecture analysis, and sports broadcasting. However, it remains computationally prohibitive for VideoLLMs, primarily due to two bottlenecks: 1) sequential video decoding, the process of converting the raw bit stream to RGB frames can take up to a minute for hour-long video inputs, and 2) costly prefilling of up to several million tokens for LLM inference, resulting in high latency and memory use. To address these challenges, we propose QuickVideo, a system-algorithm co-design that substantially accelerates long-video understanding to support real-time downstream applications. It comprises three key innovations: QuickDecoder, a parallelized CPU-based video decoder that achieves 2-3 times speedup by splitting videos into keyframe-aligned intervals processed concurrently; QuickPrefill, a memory-efficient prefilling method using KV-cache pruning to support more frames with less GPU memory; and an overlapping scheme that overlaps CPU video decoding with GPU inference. Together, these components infernece time reduce by a minute on long video inputs, enabling scalable, high-quality video understanding even on limited hardware. Experiments show that QuickVideo generalizes across durations and sampling rates, making long video processing feasible in practice.
- Abstract(参考訳): ビデオ監視、会議要約、教育講義分析、スポーツ放送といった現実の応用において、ロングビデオ理解が重要な機能として現れてきた。
しかし、主に2つのボトルネックのために、VideoLLMsは計算的に禁止されている。
1) 逐次ビデオ復号化、生のビットストリームをRGBフレームに変換するプロセスは、1時間の動画入力に1分以上かかり得る。
2) LLM推論のために最大数百万のトークンを高コストでプリフィルすることで、高いレイテンシとメモリ使用率を実現した。
これらの課題に対処するために,リアルタイムダウンストリームアプリケーションをサポートするために,長時間ビデオ理解を大幅に高速化するシステムアルゴリズムの共同設計であるQuickVideoを提案する。
並列化されたCPUベースのビデオデコーダであるQuickDecoderは、ビデオをキーフレーム整列インターバルに並列処理することで2~3倍のスピードアップを達成する。
これらのコンポーネントは、長いビデオ入力で1分短縮され、限られたハードウェアでもスケーラブルで高品質なビデオ理解が可能になる。
実験により、QuickVideoは持続時間とサンプリングレートをまたいで一般化し、長いビデオ処理を実際に実現可能であることが示された。
関連論文リスト
- VideoScan: Enabling Efficient Streaming Video Understanding via Frame-level Semantic Carriers [23.541896057977745]
VideoScanは、リアルタイムビデオインタラクションのための効率的な視覚言語モデル(VLM)推論フレームワークである。
VideoScanでは、各フレームを表すために単一のセマンティックキャリアトークンを使用している。
論文 参考訳(メタデータ) (2025-03-12T13:30:40Z) - Fast Encoding and Decoding for Implicit Video Representation [88.43612845776265]
本稿では,高速エンコーディングのためのトランスフォーマーベースのハイパーネットワークであるNeRV-Encと,効率的なビデオローディングのための並列デコーダであるNeRV-Decを紹介する。
NeRV-Encは勾配ベースの最適化をなくすことで$mathbf104times$の素晴らしいスピードアップを実現している。
NeRV-Decはビデオデコーディングを単純化し、ロード速度が$mathbf11times$で従来のコーデックよりも高速である。
論文 参考訳(メタデータ) (2024-09-28T18:21:52Z) - Video-Infinity: Distributed Long Video Generation [73.30145218077074]
拡散モデルは近年,映像生成において顕著な成果を上げている。
提案手法は,約5分で最大2,300フレームの映像を生成し,従来の手法の100倍の速度で長大な映像を生成する。
論文 参考訳(メタデータ) (2024-06-24T01:56:12Z) - Streaming Long Video Understanding with Large Language Models [83.11094441893435]
VideoStreamingは、ビデオ理解のための高度な視覚言語大モデル(VLLM)である。
一定の数のビデオストリーミングトークンを符号化し、伝播的に選択した任意の長さのビデオを理解することができる。
提案モデルは,長大なビデオベンチマークにおいて,優れた性能と高効率を実現する。
論文 参考訳(メタデータ) (2024-05-25T02:22:09Z) - Compressed Vision for Efficient Video Understanding [83.97689018324732]
本稿では,2時間ビデオの処理が可能なハードウェアを用いて,時間長動画の研究を可能にするフレームワークを提案する。
私たちは、JPEGなどの標準的なビデオ圧縮をニューラル圧縮に置き換え、圧縮されたビデオを通常のビデオネットワークへの入力として直接フィードできることを示します。
論文 参考訳(メタデータ) (2022-10-06T15:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。