SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning
- URL: http://arxiv.org/abs/2505.16186v1
- Date: Thu, 22 May 2025 03:46:03 GMT
- Title: SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning
- Authors: Kaiwen Zhou, Xuandong Zhao, Gaowen Liu, Jayanth Srinivasa, Aosong Feng, Dawn Song, Xin Eric Wang,
- Abstract summary: Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
- Score: 76.56522719330911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
Related papers
- AlphaAlign: Incentivizing Safety Alignment with Extremely Simplified Reinforcement Learning [21.399086197886202]
Large language models (LLMs) possess latent safety understanding from their vast pretraining data.<n>We propose textbfAlphaAlign, a pure reinforcement learning framework with verifiable safety reward.<n>This allows the model to develop proactive safety reasoning capabilities without depending on supervised safety-specific reasoning data.
arXiv Detail & Related papers (2025-07-20T14:47:03Z) - ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning [49.47193675702453]
Large Language Models (LLMs) have demonstrated remarkable generative capabilities.<n>LLMs remain vulnerable to malicious instructions that can bypass safety constraints.<n>We propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one.
arXiv Detail & Related papers (2025-07-14T09:05:54Z) - HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model [52.72318433518926]
Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content.<n>We introduce a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations.<n>We propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head.
arXiv Detail & Related papers (2025-06-05T07:26:34Z) - Shape it Up! Restoring LLM Safety during Finetuning [66.46166656543761]
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks.<n>We propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content.<n>We present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families.
arXiv Detail & Related papers (2025-05-22T18:05:16Z) - Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model [30.774446187857475]
We conduct a safety evaluation of 11 Multimodal Large Reasoning Models (MLRMs) across 5 benchmarks.<n>Our analysis reveals distinct safety patterns across different benchmarks.<n>It is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent.
arXiv Detail & Related papers (2025-05-10T06:59:36Z) - The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1 [70.94607997570729]
We present a comprehensive safety assessment of OpenAI-o3 and DeepSeek-R1 reasoning models.<n>We investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications.
arXiv Detail & Related papers (2025-02-18T09:06:07Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.<n>Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.<n>Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - OpenAI o1 System Card [274.83891368890977]
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought.<n>This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
arXiv Detail & Related papers (2024-12-21T18:04:31Z) - SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance [48.36220909956064]
SafeAligner is a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks.<n>We develop two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses.<n>We show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones.
arXiv Detail & Related papers (2024-06-26T07:15:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.