Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model
- URL: http://arxiv.org/abs/2505.06538v2
- Date: Wed, 21 May 2025 15:18:00 GMT
- Title: Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model
- Authors: Xinyue Lou, You Li, Jinan Xu, Xiangyu Shi, Chi Chen, Kaiyu Huang,
- Abstract summary: We conduct a safety evaluation of 11 Multimodal Large Reasoning Models (MLRMs) across 5 benchmarks.<n>Our analysis reveals distinct safety patterns across different benchmarks.<n>It is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent.
- Score: 30.774446187857475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Multimodal Large Reasoning Models (MLRMs) has demonstrated broad application potential, yet their safety and reliability remain critical concerns that require systematic exploration. To address this gap, we conduct a comprehensive and systematic safety evaluation of 11 MLRMs across 5 benchmarks and unveil prevalent safety degradation phenomena in most advanced models. Moreover, our analysis reveals distinct safety patterns across different benchmarks: significant safety degradation is observed across jailbreak robustness benchmarks, whereas safety-awareness benchmarks demonstrate less pronounced degradation. In particular, the long thought process in some scenarios even enhances safety performance. Therefore, it is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent. To operationalize this insight, we construct a multimodal tuning dataset that incorporates a safety-oriented thought process. Experimental results from fine-tuning existing MLRMs with this dataset effectively enhances the safety on both jailbreak robustness and safety-awareness benchmarks. This study provides a new perspective for developing safe MLRMs. Our dataset is available at https://github.com/xinyuelou/Think-in-Safety.
Related papers
- Beyond Safe Answers: A Benchmark for Evaluating True Risk Awareness in Large Reasoning Models [29.569220030102986]
We introduce textbfBeyond Safe Answers (BSA) bench, a novel benchmark comprising 2,000 challenging instances organized into three distinct SSA scenario types.<n> Evaluations of 19 state-of-the-art LRMs demonstrate the difficulty of this benchmark, with top-performing models achieving only 38.0% accuracy in correctly identifying risk rationales.<n>Our work provides a comprehensive assessment tool for evaluating and improving safety reasoning fidelity in LRMs, advancing the development of genuinely risk-aware and reliably safe AI systems.
arXiv Detail & Related papers (2025-05-26T08:49:19Z) - SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering.<n>LRMs pose great safety risks against harmful queries and adversarial attacks.<n>We propose SafeKey to better activate the safety aha moment in the key sentence.
arXiv Detail & Related papers (2025-05-22T03:46:03Z) - How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study [90.34190170330481]
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming.<n>However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance.<n>We present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning.
arXiv Detail & Related papers (2025-05-21T11:45:29Z) - SafeMLRM: Demystifying Safety in Multi-modal Large Reasoning Models [50.34706204154244]
Acquiring reasoning capabilities catastrophically degrades inherited safety alignment.<n>Certain scenarios suffer 25 times higher attack rates.<n>Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction.
arXiv Detail & Related papers (2025-04-09T06:53:23Z) - The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1 [70.94607997570729]
We present a comprehensive safety assessment of OpenAI-o3 and DeepSeek-R1 reasoning models.<n>We investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications.
arXiv Detail & Related papers (2025-02-18T09:06:07Z) - Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs [56.440345471966666]
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images.<n>This paper introduces MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios.<n> MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness.
arXiv Detail & Related papers (2025-02-16T16:12:40Z) - STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
We propose STAIR, a framework that integrates SafeTy Alignment with Itrospective Reasoning.<n>We show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies.<n>With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks.
arXiv Detail & Related papers (2025-02-04T15:02:55Z) - Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models [25.606641582511106]
We propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance.<n>Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks.
arXiv Detail & Related papers (2025-01-30T17:59:45Z) - Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.<n>For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.<n>We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.