An Empirical Study on Configuring In-Context Learning Demonstrations for Unleashing MLLMs' Sentimental Perception Capability
- URL: http://arxiv.org/abs/2505.16193v1
- Date: Thu, 22 May 2025 03:51:41 GMT
- Title: An Empirical Study on Configuring In-Context Learning Demonstrations for Unleashing MLLMs' Sentimental Perception Capability
- Authors: Daiqing Wu, Dongbao Yang, Sicheng Zhao, Can Ma, Yu Zhou,
- Abstract summary: We extend the zero-shot paradigm to In-Context Learning (ICL) and conduct an in-depth study on configuring demonstrations.<n>Specifically, three key factors that cover demonstrations' retrieval, presentation, and distribution are investigated and optimized.<n>A predictive bias inherent in MLLMs is also discovered and later effectively counteracted.
- Score: 20.760483719891887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancements in Multimodal Large Language Models (MLLMs) have enabled various multimodal tasks to be addressed under a zero-shot paradigm. This paradigm sidesteps the cost of model fine-tuning, emerging as a dominant trend in practical application. Nevertheless, Multimodal Sentiment Analysis (MSA), a pivotal challenge in the quest for general artificial intelligence, fails to accommodate this convenience. The zero-shot paradigm exhibits undesirable performance on MSA, casting doubt on whether MLLMs can perceive sentiments as competent as supervised models. By extending the zero-shot paradigm to In-Context Learning (ICL) and conducting an in-depth study on configuring demonstrations, we validate that MLLMs indeed possess such capability. Specifically, three key factors that cover demonstrations' retrieval, presentation, and distribution are comprehensively investigated and optimized. A sentimental predictive bias inherent in MLLMs is also discovered and later effectively counteracted. By complementing each other, the devised strategies for three factors result in average accuracy improvements of 15.9% on six MSA datasets against the zero-shot paradigm and 11.2% against the random ICL baseline.
Related papers
- MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
Recent advances in Multimodal Large Language Models (MLLMs) have shown promising results in integrating diverse modalities such as texts and images.<n>MLLMs are heavily influenced by modality bias, often relying on language while under-utilizing other modalities like visual inputs.<n>This paper argues that MLLMs are deeply affected by modality bias, highlighting its manifestations across various tasks.
arXiv Detail & Related papers (2025-05-24T11:49:31Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
In this paper, we aim to theoretically analyze the impact of in-context demonstrations on large language models' reasoning performance.<n>We propose a straightforward, generalizable, and low-complexity demonstration selection method named LMS3.
arXiv Detail & Related papers (2024-12-11T11:38:11Z) - A Comprehensive Evaluation of Large Language Models on Aspect-Based Sentiment Analysis [26.505386645322506]
Large Language Models (LLMs) have garnered increasing attention in the field of natural language processing.<n>In this paper, we shed light on a comprehensive evaluation of LLMs in the ABSA field, involving 13 datasets, 8 ABSA subtasks, and 6 LLMs.<n>Our experiments demonstrate that LLMs achieve a new state-of-the-art performance compared to fine-tuned Small Language Models (SLMs) in the fine-tuning-dependent paradigm.
arXiv Detail & Related papers (2024-12-03T08:54:17Z) - Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
Multimodal Aspect-Based Sentiment Analysis (MABSA) aims to extract aspect terms and their corresponding sentiment polarities from multimodal information, including text and images.
Traditional supervised learning methods have shown effectiveness in this task, but the adaptability of large language models (LLMs) to MABSA remains uncertain.
Recent advances in LLMs, such as Llama2, LLaVA, and ChatGPT, demonstrate strong capabilities in general tasks, yet their performance in complex and fine-grained scenarios like MABSA is underexplored.
arXiv Detail & Related papers (2024-11-23T02:17:10Z) - LLM-based MOFs Synthesis Condition Extraction using Few-Shot Demonstrations [31.35595673239483]
Large language models (LLMs) provide disruptively new solution to this long-standing problem.<n>We introduce in this work the few-shot LLM in-context learning paradigm.<n>The synthesis extraction, structure inference, and material design performance of the proposed few-shot LLMs all significantly outplay zero-shot LLM and baseline methods.
arXiv Detail & Related papers (2024-08-06T14:53:25Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Are Large Language Models Good Statisticians? [10.42853117200315]
StatQA is a new benchmark designed for statistical analysis tasks.
We show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%.
While open-source LLMs show limited capability, those fine-tuned ones exhibit marked improvements.
arXiv Detail & Related papers (2024-06-12T02:23:51Z) - Look Before You Decide: Prompting Active Deduction of MLLMs for Assumptive Reasoning [77.72128397088409]
We show that most prevalent MLLMs can be easily fooled by the introduction of a presupposition into the question.<n>We also propose a novel reinforcement learning paradigm to encourage the model to actively perform composite deduction.
arXiv Detail & Related papers (2024-04-19T15:53:27Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - From Training-Free to Adaptive: Empirical Insights into MLLMs' Understanding of Detection Information [32.57246173437492]
Vision detection models excel at recognizing fine-grained image details.<n>One effective strategy is to infuse detection information in text format, which has proven simple and effective.<n>This paper addresses the question: How does training impact MLLMs' understanding of infused textual detection information?
arXiv Detail & Related papers (2024-01-31T16:38:32Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT) approaches can be used to enhance the capability of Large Language Models (LLMs) on complex reasoning tasks.
However, the selection of optimal CoT demonstration examples in multi-modal reasoning remains less explored.
We introduce a novel approach that addresses this challenge by using retrieval mechanisms to automatically select demonstration examples.
arXiv Detail & Related papers (2023-12-04T08:07:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.