A Shape-Aware Total Body Photography System for In-focus Surface Coverage Optimization
- URL: http://arxiv.org/abs/2505.16228v1
- Date: Thu, 22 May 2025 04:57:05 GMT
- Title: A Shape-Aware Total Body Photography System for In-focus Surface Coverage Optimization
- Authors: Wei-Lun Huang, Joshua Liu, Davood Tashayyod, Jun Kang, Amir Gandjbakhche, Misha Kazhdan, Mehran Armand,
- Abstract summary: Total Body Photography (TBP) is becoming a useful screening tool for patients at high risk for skin cancer.<n>This paper proposes a novel shape-aware TBP system automatically capturing full-body images.<n>The proposed system achieves an average resolution of 0.068 mm/pixel and 0.0566 mm/pixel with approximately 85% and 95% of surface area in-focus.
- Score: 3.8598226486555314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Total Body Photography (TBP) is becoming a useful screening tool for patients at high risk for skin cancer. While much progress has been made, existing TBP systems can be further improved for automatic detection and analysis of suspicious skin lesions, which is in part related to the resolution and sharpness of acquired images. This paper proposes a novel shape-aware TBP system automatically capturing full-body images while optimizing image quality in terms of resolution and sharpness over the body surface. The system uses depth and RGB cameras mounted on a 360-degree rotary beam, along with 3D body shape estimation and an in-focus surface optimization method to select the optimal focus distance for each camera pose. This allows for optimizing the focused coverage over the complex 3D geometry of the human body given the calibrated camera poses. We evaluate the effectiveness of the system in capturing high-fidelity body images. The proposed system achieves an average resolution of 0.068 mm/pixel and 0.0566 mm/pixel with approximately 85% and 95% of surface area in-focus, evaluated on simulation data of diverse body shapes and poses as well as a real scan of a mannequin respectively. Furthermore, the proposed shape-aware focus method outperforms existing focus protocols (e.g. auto-focus). We believe the high-fidelity imaging enabled by the proposed system will improve automated skin lesion analysis for skin cancer screening.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Fully Automated OCT-based Tissue Screening System [5.646346784449182]
The system is equipped with a custom-designed motorized platform and tissue detection ability for automated, successive imaging across samples.
This fully automated OCT-based system marks a significant advancement in tissue screening, promising to transform drug discovery.
arXiv Detail & Related papers (2024-05-15T14:56:17Z) - High-precision surgical navigation using speckle structured light-based thoracoabdominal puncture robot [0.27309692684728604]
During puncture robotic surgical navigation, the needle insertion point is positioned on the patient's chest and abdomen body surface.
Traditional reflective ball tracking method is difficult to apply.
This paper designs and experiments a method that is different from previous reflective ball optical markers.
It is based on a speckle structured light camera to identify the patient's body surface and fit it into a hollow ring with a diameter of 24mm.
arXiv Detail & Related papers (2024-05-06T08:59:51Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - Dense 3D Reconstruction Through Lidar: A Comparative Study on Ex-vivo
Porcine Tissue [16.786601606755013]
Researchers are actively investigating depth sensing and 3D reconstruction for vision-based surgical assistance.
It remains difficult to achieve real-time, accurate, and robust 3D representations of the abdominal cavity for minimally invasive surgery.
This work uses quantitative testing on fresh ex-vivo porcine tissue to thoroughly characterize the quality with which a 3D laser-based time-of-flight sensor can perform anatomical surface reconstruction.
arXiv Detail & Related papers (2024-01-19T14:14:26Z) - Egocentric Whole-Body Motion Capture with FisheyeViT and Diffusion-Based
Motion Refinement [65.08165593201437]
We explore egocentric whole-body motion capture using a single fisheye camera, which simultaneously estimates human body and hand motion.
This task presents significant challenges due to the lack of high-quality datasets, fisheye camera distortion, and human body self-occlusion.
We propose a novel approach that leverages FisheyeViT to extract fisheye image features, which are converted into pixel-aligned 3D heatmap representations for 3D human body pose prediction.
arXiv Detail & Related papers (2023-11-28T07:13:47Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose Estimation of Surgical Instruments [64.59698930334012]
We present a multi-camera capture setup consisting of static and head-mounted cameras.<n>Second, we publish a multi-view RGB-D video dataset of ex-vivo spine surgeries, captured in a surgical wet lab and a real operating theatre.<n>Third, we evaluate three state-of-the-art single-view and multi-view methods for the task of 6DoF pose estimation of surgical instruments.
arXiv Detail & Related papers (2023-05-05T13:42:19Z) - Monitoring of Pigmented Skin Lesions Using 3D Whole Body Imaging [14.544274849288952]
We propose a 3D whole body imaging prototype to enable rapid evaluation and mapping of skin lesions.
A modular camera rig is designed to automatically capture synchronised images from multiple angles for entire body scanning.
We develop algorithms for 3D body image reconstruction, data processing and skin lesion detection based on deep convolutional neural networks.
arXiv Detail & Related papers (2022-05-14T15:24:06Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.