How do Scaling Laws Apply to Knowledge Graph Engineering Tasks? The Impact of Model Size on Large Language Model Performance
- URL: http://arxiv.org/abs/2505.16276v1
- Date: Thu, 22 May 2025 06:21:40 GMT
- Title: How do Scaling Laws Apply to Knowledge Graph Engineering Tasks? The Impact of Model Size on Large Language Model Performance
- Authors: Desiree Heim, Lars-Peter Meyer, Markus Schröder, Johannes Frey, Andreas Dengel,
- Abstract summary: We explore the model size scaling laws specific to Knowledge Graph Engineering (KGE) tasks.<n>In some cases, plateau or ceiling effects occurred, i.e., the task performance did not change much between a model and the next larger model.<n> Regarding models of the same family, sometimes larger models performed worse than smaller models of the same family.
- Score: 4.388282062290401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When using Large Language Models (LLMs) to support Knowledge Graph Engineering (KGE), one of the first indications when searching for an appropriate model is its size. According to the scaling laws, larger models typically show higher capabilities. However, in practice, resource costs are also an important factor and thus it makes sense to consider the ratio between model performance and costs. The LLM-KG-Bench framework enables the comparison of LLMs in the context of KGE tasks and assesses their capabilities of understanding and producing KGs and KG queries. Based on a dataset created in an LLM-KG-Bench run covering 26 open state-of-the-art LLMs, we explore the model size scaling laws specific to KGE tasks. In our analyses, we assess how benchmark scores evolve between different model size categories. Additionally, we inspect how the general score development of single models and families of models correlates to their size. Our analyses revealed that, with a few exceptions, the model size scaling laws generally also apply to the selected KGE tasks. However, in some cases, plateau or ceiling effects occurred, i.e., the task performance did not change much between a model and the next larger model. In these cases, smaller models could be considered to achieve high cost-effectiveness. Regarding models of the same family, sometimes larger models performed worse than smaller models of the same family. These effects occurred only locally. Hence it is advisable to additionally test the next smallest and largest model of the same family.
Related papers
- Efficient Construction of Model Family through Progressive Training Using Model Expansion [35.743595710122506]
We propose an efficient method for constructing the model family through progressive training.<n>Our method reduces computational costs by approximately 25% while maintaining comparable performance to independently trained models.
arXiv Detail & Related papers (2025-04-01T10:21:52Z) - Not-Just-Scaling Laws: Towards a Better Understanding of the Downstream Impact of Language Model Design Decisions [65.89403417819764]
We quantify the impact of design choices on language model capabilities.<n>By incorporating features besides model size and number of training tokens, we can achieve a relative 3-28% increase in ability to predict downstream performance.
arXiv Detail & Related papers (2025-03-05T19:46:04Z) - Scaling Laws Across Model Architectures: A Comparative Analysis of Dense and MoE Models in Large Language Models [34.79589443380606]
The scaling of large language models (LLMs) is a critical research area for the efficiency and effectiveness of model training and deployment.
Our work investigates the transferability and discrepancies of scaling laws between Dense Models and MoE models.
arXiv Detail & Related papers (2024-10-08T03:21:56Z) - What Matters for Model Merging at Scale? [94.26607564817786]
Model merging aims to combine multiple expert models into a more capable single model.
Previous studies have primarily focused on merging a few small models.
This study systematically evaluates the utility of model merging at scale.
arXiv Detail & Related papers (2024-10-04T17:17:19Z) - Large Language Model Pruning [0.0]
We suggest a model pruning technique specifically focused on LLMs.
The proposed methodology emphasizes the explainability of deep learning models.
We also explore the difference between pruning on large-scale models vs. pruning on small-scale models.
arXiv Detail & Related papers (2024-05-24T18:22:15Z) - More Compute Is What You Need [3.184416958830696]
We propose a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models.
We predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
arXiv Detail & Related papers (2024-04-30T12:05:48Z) - When Do We Not Need Larger Vision Models? [55.957626371697785]
Scaling up the size of vision models has been the de facto standard to obtain more powerful visual representations.
We demonstrate the power of Scaling on Scales (S$2$), whereby a pre-trained and frozen smaller vision model can outperform larger models.
We release a Python package that can apply S$2$ on any vision model with one line of code.
arXiv Detail & Related papers (2024-03-19T17:58:39Z) - PanGu-$\pi$: Enhancing Language Model Architectures via Nonlinearity
Compensation [97.78045712375047]
We present a new efficient model architecture for large language models (LLMs)
We show that PanGu-$pi$-7B can achieve a comparable performance to that of benchmarks with about 10% inference speed-up.
In addition, we have deployed PanGu-$pi$-7B in the high-value domains of finance and law, developing an LLM named YunShan for practical application.
arXiv Detail & Related papers (2023-12-27T11:49:24Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
Mixture of Experts layers (MoEs) enable efficient scaling of language models through conditional computation.
This paper presents a detailed empirical study of how autoregressive MoE language models scale in comparison with dense models in a wide range of settings.
arXiv Detail & Related papers (2021-12-20T17:05:11Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.