Efficient Construction of Model Family through Progressive Training Using Model Expansion
- URL: http://arxiv.org/abs/2504.00623v1
- Date: Tue, 01 Apr 2025 10:21:52 GMT
- Title: Efficient Construction of Model Family through Progressive Training Using Model Expansion
- Authors: Kazuki Yano, Sho Takase, Sosuke Kobayashi, Shun Kiyono, Jun Suzuki,
- Abstract summary: We propose an efficient method for constructing the model family through progressive training.<n>Our method reduces computational costs by approximately 25% while maintaining comparable performance to independently trained models.
- Score: 35.743595710122506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) gain widespread practical application, providing the model family of different parameter sizes has become standard practice to address diverse computational requirements. Conventionally, each model in a family is trained independently, resulting in computational costs that scale additively with the number of models. We propose an efficient method for constructing the model family through progressive training, where smaller models are incrementally expanded to larger sizes to create a complete model family. Through extensive experiments with a model family ranging from 1B to 8B parameters, we demonstrate that our method reduces computational costs by approximately 25% while maintaining comparable performance to independently trained models. Furthermore, by strategically adjusting maximum learning rates based on model size, our method outperforms the independent training across various metrics. Beyond performance gains, our approach offers an additional advantage: models in our family tend to yield more consistent behavior across different model sizes.
Related papers
- Not-Just-Scaling Laws: Towards a Better Understanding of the Downstream Impact of Language Model Design Decisions [65.89403417819764]
We quantify the impact of design choices on language model capabilities.<n>By incorporating features besides model size and number of training tokens, we can achieve a relative 3-28% increase in ability to predict downstream performance.
arXiv Detail & Related papers (2025-03-05T19:46:04Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.
We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - Scaling Laws Across Model Architectures: A Comparative Analysis of Dense and MoE Models in Large Language Models [34.79589443380606]
The scaling of large language models (LLMs) is a critical research area for the efficiency and effectiveness of model training and deployment.
Our work investigates the transferability and discrepancies of scaling laws between Dense Models and MoE models.
arXiv Detail & Related papers (2024-10-08T03:21:56Z) - Single Parent Family: A Spectrum of Family Members from a Single Pre-Trained Foundation Model [20.054342930450055]
This paper introduces a novel method of Progressive Low Rank Decomposition (PLRD) tailored for the compression of large language models.
PLRD allows for significant reductions in computational overhead and energy consumption.
Our findings suggest that PLRD could set a new standard for the efficient scaling of LLMs.
arXiv Detail & Related papers (2024-06-28T15:27:57Z) - Observational Scaling Laws and the Predictability of Language Model Performance [51.2336010244645]
We propose an observational approach that bypasses model training and instead builds scaling laws from 100 publically available models.
We show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models.
We show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
arXiv Detail & Related papers (2024-05-17T17:49:44Z) - Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training [32.154166415680066]
Methods like distillation, compression or quantization help leverage the highly performant large models to induce smaller performant ones.
This paper explores the hypothesis that a single training run can simultaneously train a larger model for performance and derive a smaller model for deployment.
arXiv Detail & Related papers (2024-02-07T17:07:41Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.