Augmenting LLM Reasoning with Dynamic Notes Writing for Complex QA
- URL: http://arxiv.org/abs/2505.16293v1
- Date: Thu, 22 May 2025 06:45:05 GMT
- Title: Augmenting LLM Reasoning with Dynamic Notes Writing for Complex QA
- Authors: Rishabh Maheshwary, Masoud Hashemi, Khyati Mahajan, Shiva Krishna Reddy Malay, Sai Rajeswar, Sathwik Tejaswi Madhusudhan, Spandana Gella, Vikas Yadav,
- Abstract summary: Notes Writing is a method that generates concise and relevant notes from retrieved documents at each step.<n>This indirectly increases the effective context length of Large Language Models.<n>We demonstrate its effectiveness with three iterative RAG methods, across two models and four evaluation datasets.
- Score: 10.74822312765908
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Iterative RAG for multi-hop question answering faces challenges with lengthy contexts and the buildup of irrelevant information. This hinders a model's capacity to process and reason over retrieved content and limits performance. While recent methods focus on compressing retrieved information, they are either restricted to single-round RAG, require finetuning or lack scalability in iterative RAG. To address these challenges, we propose Notes Writing, a method that generates concise and relevant notes from retrieved documents at each step, thereby reducing noise and retaining only essential information. This indirectly increases the effective context length of Large Language Models (LLMs), enabling them to reason and plan more effectively while processing larger volumes of input text. Notes Writing is framework agnostic and can be integrated with different iterative RAG methods. We demonstrate its effectiveness with three iterative RAG methods, across two models and four evaluation datasets. Notes writing yields an average improvement of 15.6 percentage points overall, with minimal increase in output tokens.
Related papers
- FrugalRAG: Learning to retrieve and reason for multi-hop QA [10.193015391271535]
Large-scale fine-tuning is not needed to improve RAG metrics.<n>Supervised and RL-based fine-tuning can help RAG from the perspective of frugality.
arXiv Detail & Related papers (2025-07-10T11:02:13Z) - SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling [70.01883340129204]
Single-Pass.<n>with Reference-Guided Evaluation (SPARE)<n>Novel structured framework that enables single-pass, per-step annotation by aligning each solution step to one or multiple steps in a reference solution, accompanied by explicit reasoning for evaluation.<n>SPARE achieves competitive performance on challenging mathematical datasets while offering 2.6 times greater efficiency, requiring only 38% of the runtime.
arXiv Detail & Related papers (2025-06-18T14:37:59Z) - QA-prompting: Improving Summarization with Large Language Models using Question-Answering [0.0]
Language Models (LMs) have revolutionized natural language processing, enabling high-quality text generation through prompting and in-context learning.<n>We propose QA-prompting - a simple prompting method for summarization that utilizes question-answering as an intermediate step prior to summary generation.<n>Our method extracts key information and enriches the context of text to mitigate positional biases and improve summarization in a single LM call per task without requiring fine-tuning or pipelining.
arXiv Detail & Related papers (2025-05-20T13:29:36Z) - Multiple Abstraction Level Retrieve Augment Generation [4.516242893120263]
A Retrieval-Augmented Generation (RAG) model powered by a large language model (LLM) provides a faster and more cost-effective solution for adapting to new data and knowledge.<n>We propose a novel RAG approach that uses chunks of multiple abstraction levels (MAL), including multi-sentence-level, paragraph-level, section-level, and document-level.<n>Compared to traditional single-level RAG approaches, our approach improves AI evaluated answer correctness of Q/A by 25.739% on Glyco-related papers.
arXiv Detail & Related papers (2025-01-28T13:49:39Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
Retrieval-augmented generation (RAG) can supplement large language models (LLMs) by integrating external knowledge.<n>This paper presents BRIEF, a lightweight approach that performs query-aware multi-hop reasoning.<n>Based on our synthetic data built entirely by open-source models, BRIEF generates more concise summaries.
arXiv Detail & Related papers (2024-10-20T04:24:16Z) - GARLIC: LLM-Guided Dynamic Progress Control with Hierarchical Weighted Graph for Long Document QA [16.945257645760428]
In the past, Retrieval-Augmented Generation (RAG) methods split text into chunks to enable language models to handle long documents.
Recent tree-based RAG methods are able to retrieve detailed information while preserving global context.
We propose a new retrieval method, called LLM-Guided Dynamic Progress Control with Hierarchical Weighted Graph (GARLIC)
arXiv Detail & Related papers (2024-10-07T07:02:09Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
We propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer.<n> Experimental results on the multi-hop question-answering HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-07-18T02:19:00Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - Making Retrieval-Augmented Language Models Robust to Irrelevant Context [55.564789967211844]
An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant.
Recent work has shown that retrieval augmentation can sometimes have a negative effect on performance.
arXiv Detail & Related papers (2023-10-02T18:52:35Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
We propose the first effective query strategy for Active Learning in abstractive text summarization.
We show that using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores.
arXiv Detail & Related papers (2023-01-09T10:33:14Z) - Memory Augmented Sequential Paragraph Retrieval for Multi-hop Question
Answering [32.69969157825044]
We propose a new architecture that models paragraphs as sequential data and considers multi-hop information retrieval as a kind of sequence labeling task.
We evaluate our method on both full wiki and distractor subtask of HotpotQA, a public textual multi-hop QA dataset.
arXiv Detail & Related papers (2021-02-07T08:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.