SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling
- URL: http://arxiv.org/abs/2506.15498v1
- Date: Wed, 18 Jun 2025 14:37:59 GMT
- Title: SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling
- Authors: Md Imbesat Hassan Rizvi, Xiaodan Zhu, Iryna Gurevych,
- Abstract summary: Single-Pass.<n>with Reference-Guided Evaluation (SPARE)<n>Novel structured framework that enables single-pass, per-step annotation by aligning each solution step to one or multiple steps in a reference solution, accompanied by explicit reasoning for evaluation.<n>SPARE achieves competitive performance on challenging mathematical datasets while offering 2.6 times greater efficiency, requiring only 38% of the runtime.
- Score: 70.01883340129204
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Process or step-wise supervision has played a crucial role in advancing complex multi-step reasoning capabilities of Large Language Models (LLMs). However, efficient, high-quality automated process annotation remains a significant challenge. To address this, we introduce Single-Pass Annotation with Reference-Guided Evaluation (SPARE), a novel structured framework that enables single-pass, per-step annotation by aligning each solution step to one or multiple steps in a reference solution, accompanied by explicit reasoning for evaluation. We show that reference-guided step-level evaluation effectively facilitates process supervision on four datasets spanning three domains: mathematical reasoning, multi-hop compositional question answering, and spatial reasoning. We demonstrate that SPARE, when compared to baselines, improves reasoning performance when used for: (1) fine-tuning models in an offline RL setup for inference-time greedy-decoding, and (2) training reward models for ranking/aggregating multiple LLM-generated outputs. Additionally, SPARE achieves competitive performance on challenging mathematical datasets while offering 2.6 times greater efficiency, requiring only 38% of the runtime, compared to tree search-based automatic annotation. The codebase, along with a trained SPARE-PRM model, is publicly released to facilitate further research and reproducibility.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Enhancing Test-Time Scaling of Large Language Models with Hierarchical Retrieval-Augmented MCTS [19.394761422323853]
We introduce R2-LLMs, a novel and versatile hierarchical retrieval-augmented reasoning framework.<n>R2-LLMs enhances inference-time generalization by integrating dual-level retrieval-based in-context learning.<n> Empirical evaluations on the MATH500, GSM8K, and OlympiadBench-TO datasets achieve substantial relative improvement.
arXiv Detail & Related papers (2025-07-08T00:41:12Z) - Ask, Fail, Repeat: Meeseeks, an Iterative Feedback Benchmark for LLMs' Multi-turn Instruction-Following Ability [5.393872292662451]
Meeseeks simulates realistic human-LLM interactions through an iterative feedback framework.<n>Meeseeks provides valuable insights into LLMs' instruction-following capabilities in multi-turn scenarios.
arXiv Detail & Related papers (2025-04-30T13:28:19Z) - PanguIR Technical Report for NTCIR-18 AEOLLM Task [12.061652026366591]
Large language models (LLMs) are increasingly critical and challenging to evaluate.<n>Manual evaluation, while comprehensive, is often costly and resource-intensive.<n>automatic evaluation offers greater scalability but is constrained by the limitations of its evaluation criteria.
arXiv Detail & Related papers (2025-03-04T07:40:02Z) - Multi2: Multi-Agent Test-Time Scalable Framework for Multi-Document Processing [43.75154489681047]
We propose a novel framework leveraging test-time scaling for Multi-Document Summarization (MDS)<n>Our approach employs prompt ensemble techniques to generate multiple candidate summaries using various prompts, then combines them with an aggregator to produce a refined summary.<n>To evaluate our method effectively, we also introduce two new LLM-based metrics: the Consistency-Aware Preference (CAP) score and LLM Atom-Content-Unit (LLM-ACU) score.
arXiv Detail & Related papers (2025-02-27T23:34:47Z) - SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models [88.29990536278167]
We introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs.<n>Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities.
arXiv Detail & Related papers (2024-12-16T09:47:43Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Improve Mathematical Reasoning in Language Models by Automated Process Supervision [23.807288360423193]
We propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named textitOmegaPRM for the efficient collection of high-quality process supervision data.<n>We are able to collect over 1.5 million process supervision annotations to train Process Reward Models (PRMs)<n>This fully automated process supervision alongside the weighted self-consistency algorithm is able to enhance LLMs' math reasoning performances.
arXiv Detail & Related papers (2024-06-05T19:25:40Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - A Multi-Task BERT Model for Schema-Guided Dialogue State Tracking [78.2700757742992]
Task-oriented dialogue systems often employ a Dialogue State Tracker (DST) to successfully complete conversations.
Recent state-of-the-art DST implementations rely on schemata of diverse services to improve model robustness.
We propose a single multi-task BERT-based model that jointly solves the three DST tasks of intent prediction, requested slot prediction and slot filling.
arXiv Detail & Related papers (2022-07-02T13:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.