Layer-wise Investigation of Large-Scale Self-Supervised Music Representation Models
- URL: http://arxiv.org/abs/2505.16306v1
- Date: Thu, 22 May 2025 06:58:24 GMT
- Title: Layer-wise Investigation of Large-Scale Self-Supervised Music Representation Models
- Authors: Yizhi Zhou, Haina Zhu, Hangting Chen,
- Abstract summary: We analyze the advanced music representation model MusicFM and the newly emerged SSL model MuQ.<n>We focus on three main aspects: (i) validating the advantages of SSL models across multiple downstream tasks, (ii) exploring the specialization of layer-wise information for different tasks, and (iii) comparing performance differences when selecting specific layers.
- Score: 4.243926243206826
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, pre-trained models for music information retrieval based on self-supervised learning (SSL) are becoming popular, showing success in various downstream tasks. However, there is limited research on the specific meanings of the encoded information and their applicability. Exploring these aspects can help us better understand their capabilities and limitations, leading to more effective use in downstream tasks. In this study, we analyze the advanced music representation model MusicFM and the newly emerged SSL model MuQ. We focus on three main aspects: (i) validating the advantages of SSL models across multiple downstream tasks, (ii) exploring the specialization of layer-wise information for different tasks, and (iii) comparing performance differences when selecting specific layers. Through this analysis, we reveal insights into the structure and potential applications of SSL models in music information retrieval.
Related papers
- The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.<n>We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.<n>Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
arXiv Detail & Related papers (2024-10-25T23:38:28Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.<n>We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.<n>Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - A Survey of the Self Supervised Learning Mechanisms for Vision Transformers [5.152455218955949]
The application of self supervised learning (SSL) in vision tasks has gained significant attention.<n>We develop a comprehensive taxonomy of systematically classifying the SSL techniques.<n>We discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field.
arXiv Detail & Related papers (2024-08-30T07:38:28Z) - Self-Supervised Skeleton-Based Action Representation Learning: A Benchmark and Beyond [19.074841631219233]
Self-supervised learning (SSL) has been proven effective for skeleton-based action understanding.
In this paper, we conduct a comprehensive survey on self-supervised skeleton-based action representation learning.
arXiv Detail & Related papers (2024-06-05T06:21:54Z) - Toward Leveraging Pre-Trained Self-Supervised Frontends for Automatic
Singing Voice Understanding Tasks: Three Case Studies [1.2691047660244337]
Self-supervised learning models (SSL models) have been trained using large amounts of unlabeled data in the field of speech processing and music classification.
We report the results of experiments comparing SSL models for three different tasks (i.e., singer identification, singing voice transcription, and singing technique classification) as initial exploration and aim to discuss these findings.
arXiv Detail & Related papers (2023-06-22T07:47:18Z) - Explaining, Analyzing, and Probing Representations of Self-Supervised
Learning Models for Sensor-based Human Activity Recognition [2.2082422928825136]
Self-supervised learning (SSL) frameworks have been extensively applied to sensor-based Human Activity Recognition (HAR)
In this paper, we aim to analyze deep representations of two recent SSL frameworks, namely SimCLR and VICReg.
arXiv Detail & Related papers (2023-04-14T07:53:59Z) - A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends [82.64268080902742]
Self-supervised learning (SSL) aims to learn discriminative features from unlabeled data without relying on human-annotated labels.
SSL has garnered significant attention recently, leading to the development of numerous related algorithms.
This paper presents a review of diverse SSL methods, encompassing algorithmic aspects, application domains, three key trends, and open research questions.
arXiv Detail & Related papers (2023-01-13T14:41:05Z) - On the Utility of Self-supervised Models for Prosody-related Tasks [44.66341483900179]
Self-Supervised Learning from speech data has produced models that have achieved remarkable performance in many tasks.
We present a new evaluation framework, SUPERB-prosody, consisting of three prosody-related downstream tasks and two pseudo tasks.
We find that 13 of the 15 SSL models outperformed the baseline on all the prosody-related tasks.
arXiv Detail & Related papers (2022-10-13T17:06:30Z) - DATA: Domain-Aware and Task-Aware Pre-training [94.62676913928831]
We present DATA, a simple yet effective NAS approach specialized for self-supervised learning (SSL)
Our method achieves promising results across a wide range of computation costs on downstream tasks, including image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2022-03-17T02:38:49Z) - Sound and Visual Representation Learning with Multiple Pretraining Tasks [104.11800812671953]
Self-supervised tasks (SSL) reveal different features from the data.
This work aims to combine Multiple SSL tasks (Multi-SSL) that generalizes well for all downstream tasks.
Experiments on sound representations demonstrate that Multi-SSL via incremental learning (IL) of SSL tasks outperforms single SSL task models.
arXiv Detail & Related papers (2022-01-04T09:09:38Z) - Self-Supervised Learning for speech recognition with Intermediate layer
supervision [52.93758711230248]
We propose Intermediate Layer Supervision for Self-Supervised Learning (ILS-SSL)
ILS-SSL forces the model to concentrate on content information as much as possible by adding an additional SSL loss on the intermediate layers.
Experiments on LibriSpeech test-other set show that our method outperforms HuBERT significantly.
arXiv Detail & Related papers (2021-12-16T10:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.