Incentivizing Dual Process Thinking for Efficient Large Language Model Reasoning
- URL: http://arxiv.org/abs/2505.16315v1
- Date: Thu, 22 May 2025 07:15:08 GMT
- Title: Incentivizing Dual Process Thinking for Efficient Large Language Model Reasoning
- Authors: Xiaoxue Cheng, Junyi Li, Zhenduo Zhang, Xinyu Tang, Wayne Xin Zhao, Xinyu Kong, Zhiqiang Zhang,
- Abstract summary: Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking.<n>Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization.<n>ACPO enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch.
- Score: 75.04643265875072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking, generating redundant content regardless of task difficulty. Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization (ACPO), a reinforcement learning framework that enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch. ACPO incorporates two key components: (1) introducing system-aware reasoning tokens to explicitly represent the thinking modes thereby making the model's cognitive process transparent, and (2) integrating online difficulty estimation and token length budget to guide adaptive system switch and reasoning during reinforcement learning. To this end, we propose a two-stage training strategy. The first stage begins with supervised fine-tuning to cold start the model, enabling it to generate reasoning paths with explicit thinking modes. In the second stage, we apply ACPO to further enhance adaptive system switch for difficulty-aware reasoning. Experimental results demonstrate that ACPO effectively reduces redundant reasoning while adaptively adjusting cognitive allocation based on task complexity, achieving efficient hybrid reasoning.
Related papers
- VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning [69.44871115752055]
We propose an advanced multimodal reasoning model trained via a novel Progressive Curriculum Reinforcement Learning (PCuRL) framework.<n>PCuRL systematically guides the model through tasks of gradually increasing difficulty, substantially improving its reasoning abilities across diverse multimodal contexts.<n>The framework introduces two key innovations: (1) an online difficulty soft weighting mechanism, dynamically adjusting training difficulty across successive RL training stages; and (2) a dynamic length reward mechanism, which encourages the model to adaptively regulate its reasoning path length according to task complexity.
arXiv Detail & Related papers (2025-07-30T12:23:21Z) - Learning Deliberately, Acting Intuitively: Unlocking Test-Time Reasoning in Multimodal LLMs [7.501387372794562]
Deliberate-to-Intuitive reasoning framework (D2I) improves understanding and reasoning ability of multimodal language models.<n>Our method sets deliberate reasoning strategies to enhance modality alignment only through the rule-based format reward during training.<n>While evaluating, the reasoning style shifts to intuitive, which removes deliberate reasoning strategies during training and implicitly reflects the model's acquired abilities in the response.
arXiv Detail & Related papers (2025-07-09T16:25:44Z) - AdapThink: Adaptive Thinking Preferences for Reasoning Language Model [32.47427081297578]
Reinforcement Learning (RL)-based post-training has significantly advanced the complex reasoning capabilities of language models.<n>However, this slow thinking'' paradigm presents a critical challenge to reasoning efficiency.<n>We propose AdapThink, an adaptive post-training framework designed to induce more efficient thinking.
arXiv Detail & Related papers (2025-06-23T02:06:04Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - PATS: Process-Level Adaptive Thinking Mode Switching [53.53401063490537]
Current large-language models (LLMs) typically adopt a fixed reasoning strategy, either simple or complex, for all questions, regardless of their difficulty.<n>This neglect of variation in task and reasoning process complexity leads to an imbalance between performance and efficiency.<n>Existing methods attempt to implement training-free fast-slow thinking system switching to handle problems of varying difficulty, but are limited by coarse-grained solution-level strategy adjustments.<n>We propose a novel reasoning paradigm: Process-Level Adaptive Thinking Mode Switching (PATS), which enables LLMs to dynamically adjust their reasoning strategy based on the difficulty of each step, optimizing the balance between
arXiv Detail & Related papers (2025-05-25T17:58:50Z) - Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models [45.33952788910874]
TON is a two-stage training strategy for vision-language models.<n>It introduces a think-or-not format that serves as a cold start for selective reasoning.<n>TON can reduce the completion length by up to 90% compared to vanilla GRPO.
arXiv Detail & Related papers (2025-05-22T16:13:29Z) - Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
We introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE)<n>RICE aims to improve reasoning performance without additional training or complexs.<n> Empirical evaluations with leading MoE-based LRMs demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization.
arXiv Detail & Related papers (2025-05-20T17:59:16Z) - DSADF: Thinking Fast and Slow for Decision Making [9.84593001541736]
We propose a Dual-System Adaptive Decision Framework (DSADF) to integrate two complementary modules: System 1, comprising an RL agent and a memory space for fast and intuitive decision making, and System 2, driven by a VLM for deep and analytical reasoning.
arXiv Detail & Related papers (2025-05-13T02:58:04Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)<n>FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.<n>FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - Unlocking Structured Thinking in Language Models with Cognitive Prompting [0.0]
We propose cognitive prompting as a novel approach to guide problem-solving in large language models (LLMs)<n>We introduce three variants: a deterministic sequence of cognitive operations, a self-adaptive variant, and a hybrid variant.<n>Experiments with LLaMA, Gemma2, and Qwen models in each two sizes on the arithmetic reasoning benchmark GSM8K demonstrate that cognitive prompting significantly improves performance compared to standard question answering.
arXiv Detail & Related papers (2024-10-03T19:53:47Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [37.430396755248104]
We propose the Deductive and InDuctive(DID) method to enhance Large Language Models (LLMs) reasoning.<n>DID implements a dual-metric complexity evaluation system that combines Littlestone dimension and information entropy.<n>Our results demonstrate significant improvements in reasoning quality and solution accuracy.
arXiv Detail & Related papers (2024-10-03T18:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.