Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models
- URL: http://arxiv.org/abs/2505.16854v1
- Date: Thu, 22 May 2025 16:13:29 GMT
- Title: Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models
- Authors: Jiaqi Wang, Kevin Qinghong Lin, James Cheng, Mike Zheng Shou,
- Abstract summary: TON is a two-stage training strategy for vision-language models.<n>It introduces a think-or-not format that serves as a cold start for selective reasoning.<n>TON can reduce the completion length by up to 90% compared to vanilla GRPO.
- Score: 45.33952788910874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.
Related papers
- Thinking with Nothinking Calibration: A New In-Context Learning Paradigm in Reasoning Large Language Models [23.642200042199484]
We propose Thinking with Nothinking (JointThinking) as an in-context learning (ICL) paradigm for Reasoning large language models (RLLMs)<n>Our method prompts the model to generate two answers in parallel: one in Thinking mode and the other in Nothinking mode.<n>JointThinking significantly outperforms few-shot chain-of-thought robustness (CoT) and majority voting with improved answer.
arXiv Detail & Related papers (2025-08-05T12:09:55Z) - ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning [12.83211408922535]
Reinforcement learning-style post-training improves reasoning by optimizing model outputs based on reward or preference signals.<n> GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier.<n>We propose $textbfSelf-Explanation Policy Optimization (ExPO)$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer.
arXiv Detail & Related papers (2025-07-03T17:44:55Z) - Socratic-MCTS: Test-Time Visual Reasoning by Asking the Right Questions [100.41062461003389]
We show that framing reasoning as a search process helps the model "connect the dots" between fragmented knowledge and produce extended reasoning traces in non-reasoning models.<n>We evaluate our method across three benchmarks and observe consistent improvements.
arXiv Detail & Related papers (2025-06-10T15:51:16Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Incentivizing Dual Process Thinking for Efficient Large Language Model Reasoning [75.04643265875072]
Large reasoning models (LRMs) have demonstrated strong performance on complex reasoning tasks, but often suffer from overthinking.<n>Inspired by the dual process theory in cognitive science, we propose Adaptive Cognition Policy Optimization.<n>ACPO enables LRMs to achieve efficient reasoning through adaptive cognitive allocation and dynamic system switch.
arXiv Detail & Related papers (2025-05-22T07:15:08Z) - AdaptThink: Reasoning Models Can Learn When to Think [42.77877234302026]
We propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty.<n>Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance.
arXiv Detail & Related papers (2025-05-19T17:50:52Z) - Thinkless: LLM Learns When to Think [57.857534644932194]
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference.<n>We propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning.<n>On several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%.
arXiv Detail & Related papers (2025-05-19T17:24:16Z) - VL-Rethinker: Incentivizing Self-Reflection of Vision-Language Models with Reinforcement Learning [55.97950660659051]
We aim to enhance the slow-thinking capabilities of vision-language models using reinforcement learning (without relying on distillation)<n>We introduce Forced Rethinking, which appends a rethinking trigger token to the end of rollouts in RL training, explicitly enforcing a self-reflection reasoning step.<n>Our model, VL-Rethinker, advances state-of-the-art scores on MathVista, MathVerse to achieve 80.4%, 63.5% respectively.
arXiv Detail & Related papers (2025-04-10T17:41:56Z) - GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training [62.536191233049614]
Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs)<n>This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld.<n>We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse.
arXiv Detail & Related papers (2025-03-11T15:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.