Chain-of-Thought Poisoning Attacks against R1-based Retrieval-Augmented Generation Systems
- URL: http://arxiv.org/abs/2505.16367v1
- Date: Thu, 22 May 2025 08:22:46 GMT
- Title: Chain-of-Thought Poisoning Attacks against R1-based Retrieval-Augmented Generation Systems
- Authors: Hongru Song, Yu-an Liu, Ruqing Zhang, Jiafeng Guo, Yixing Fan,
- Abstract summary: Existing adversarial attack methods typically exploit knowledge base poisoning to probe the vulnerabilities of RAG systems.<n>This paper uses reasoning process templates from R1-based RAG systems to wrap erroneous knowledge into adversarial documents, and injects them into the knowledge base to attack RAG systems.<n>The key idea of our approach is that adversarial documents, by simulating the chain-of-thought patterns aligned with the model's training signals, may be misinterpreted by the model as authentic historical reasoning processes.
- Score: 39.05753852489526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) systems can effectively mitigate the hallucination problem of large language models (LLMs),but they also possess inherent vulnerabilities. Identifying these weaknesses before the large-scale real-world deployment of RAG systems is of great importance, as it lays the foundation for building more secure and robust RAG systems in the future. Existing adversarial attack methods typically exploit knowledge base poisoning to probe the vulnerabilities of RAG systems, which can effectively deceive standard RAG models. However, with the rapid advancement of deep reasoning capabilities in modern LLMs, previous approaches that merely inject incorrect knowledge are inadequate when attacking RAG systems equipped with deep reasoning abilities. Inspired by the deep thinking capabilities of LLMs, this paper extracts reasoning process templates from R1-based RAG systems, uses these templates to wrap erroneous knowledge into adversarial documents, and injects them into the knowledge base to attack RAG systems. The key idea of our approach is that adversarial documents, by simulating the chain-of-thought patterns aligned with the model's training signals, may be misinterpreted by the model as authentic historical reasoning processes, thus increasing their likelihood of being referenced. Experiments conducted on the MS MARCO passage ranking dataset demonstrate the effectiveness of our proposed method.
Related papers
- Bias Amplification in RAG: Poisoning Knowledge Retrieval to Steer LLMs [17.364495894862902]
In Large Language Models, Retrieval-Augmented Generation (RAG) systems can significantly enhance the performance of large language models by integrating external knowledge.<n>Existing research focuses mainly on how poisoning attacks in RAG systems affect model output quality, overlooking their potential to amplify model biases.<n>This paper proposes a Bias Retrieval and Reward Attack (BRRA) framework, which systematically investigates attack pathways that amplify language model biases.
arXiv Detail & Related papers (2025-06-13T02:28:46Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - Benchmarking Poisoning Attacks against Retrieval-Augmented Generation [12.573766276297441]
Retrieval-Augmented Generation (RAG) has proven effective in mitigating hallucinations in large language models by incorporating external knowledge during inference.<n>We propose the first comprehensive benchmark framework for evaluating poisoning attacks on RAG.
arXiv Detail & Related papers (2025-05-24T06:17:59Z) - POISONCRAFT: Practical Poisoning of Retrieval-Augmented Generation for Large Language Models [4.620537391830117]
Large language models (LLMs) are susceptible to hallucinations, which can lead to incorrect or misleading outputs.<n>Retrieval-augmented generation (RAG) is a promising approach to mitigate hallucinations by leveraging external knowledge sources.<n>In this paper, we study a poisoning attack on RAG systems named POISONCRAFT, which can mislead the model to refer to fraudulent websites.
arXiv Detail & Related papers (2025-05-10T09:36:28Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)<n>In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - The RAG Paradox: A Black-Box Attack Exploiting Unintentional Vulnerabilities in Retrieval-Augmented Generation Systems [8.347617177093056]
We introduce a realistic black-box attack scenario based on the RAG paradox, where RAG systems inadvertently expose vulnerabilities while attempting to enhance trustworthiness.<n>Because RAG systems reference external documents during response generation, our attack targets these sources without requiring internal access.<n>Our approach first identifies the external sources disclosed by RAG systems and then automatically generates poisoned documents with misinformation designed to match these sources.
arXiv Detail & Related papers (2025-02-28T12:32:53Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Multimodal large language models (MLLMs) equipped with Retrieval Augmented Generation (RAG)<n>RAG enhances MLLMs by grounding responses in query-relevant external knowledge.<n>This reliance poses a critical yet underexplored safety risk: knowledge poisoning attacks.<n>We propose MM-PoisonRAG, a novel knowledge poisoning attack framework with two attack strategies.
arXiv Detail & Related papers (2025-02-25T04:23:59Z) - Pirates of the RAG: Adaptively Attacking LLMs to Leak Knowledge Bases [11.101624331624933]
This paper presents a black-box attack to force a RAG system to leak its private knowledge base.<n>A relevance-based mechanism and an attacker-side open-source LLM favor the generation of effective queries to leak most of the (hidden) knowledge base.
arXiv Detail & Related papers (2024-12-24T09:03:57Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) systems have emerged as a promising solution to mitigate hallucinations.<n>RAG systems are vulnerable to adversarial poisoning attacks, where malicious passages injected into retrieval databases can mislead the model into generating factually incorrect outputs.<n>This paper investigates both the retrieval and the generation components of RAG systems to understand how to enhance their robustness against such attacks.
arXiv Detail & Related papers (2024-12-21T17:31:52Z) - LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks [60.719158008403376]
Our research focuses on the capabilities of Large Language Models (LLMs) in the detection of unknown fraudulent activities within recommender systems.<n>We propose LoRec, an advanced framework that employs LLM-Enhanced to strengthen the robustness of sequential recommender systems.<n>Our comprehensive experiments validate that LoRec, as a general framework, significantly strengthens the robustness of sequential recommender systems.
arXiv Detail & Related papers (2024-01-31T10:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.