Bias Amplification in RAG: Poisoning Knowledge Retrieval to Steer LLMs
- URL: http://arxiv.org/abs/2506.11415v1
- Date: Fri, 13 Jun 2025 02:28:46 GMT
- Title: Bias Amplification in RAG: Poisoning Knowledge Retrieval to Steer LLMs
- Authors: Linlin Wang, Tianqing Zhu, Laiqiao Qin, Longxiang Gao, Wanlei Zhou,
- Abstract summary: In Large Language Models, Retrieval-Augmented Generation (RAG) systems can significantly enhance the performance of large language models by integrating external knowledge.<n>Existing research focuses mainly on how poisoning attacks in RAG systems affect model output quality, overlooking their potential to amplify model biases.<n>This paper proposes a Bias Retrieval and Reward Attack (BRRA) framework, which systematically investigates attack pathways that amplify language model biases.
- Score: 17.364495894862902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Large Language Models, Retrieval-Augmented Generation (RAG) systems can significantly enhance the performance of large language models by integrating external knowledge. However, RAG also introduces new security risks. Existing research focuses mainly on how poisoning attacks in RAG systems affect model output quality, overlooking their potential to amplify model biases. For example, when querying about domestic violence victims, a compromised RAG system might preferentially retrieve documents depicting women as victims, causing the model to generate outputs that perpetuate gender stereotypes even when the original query is gender neutral. To show the impact of the bias, this paper proposes a Bias Retrieval and Reward Attack (BRRA) framework, which systematically investigates attack pathways that amplify language model biases through a RAG system manipulation. We design an adversarial document generation method based on multi-objective reward functions, employ subspace projection techniques to manipulate retrieval results, and construct a cyclic feedback mechanism for continuous bias amplification. Experiments on multiple mainstream large language models demonstrate that BRRA attacks can significantly enhance model biases in dimensions. In addition, we explore a dual stage defense mechanism to effectively mitigate the impacts of the attack. This study reveals that poisoning attacks in RAG systems directly amplify model output biases and clarifies the relationship between RAG system security and model fairness. This novel potential attack indicates that we need to keep an eye on the fairness issues of the RAG system.
Related papers
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - Chain-of-Thought Poisoning Attacks against R1-based Retrieval-Augmented Generation Systems [39.05753852489526]
Existing adversarial attack methods typically exploit knowledge base poisoning to probe the vulnerabilities of RAG systems.<n>This paper uses reasoning process templates from R1-based RAG systems to wrap erroneous knowledge into adversarial documents, and injects them into the knowledge base to attack RAG systems.<n>The key idea of our approach is that adversarial documents, by simulating the chain-of-thought patterns aligned with the model's training signals, may be misinterpreted by the model as authentic historical reasoning processes.
arXiv Detail & Related papers (2025-05-22T08:22:46Z) - POISONCRAFT: Practical Poisoning of Retrieval-Augmented Generation for Large Language Models [4.620537391830117]
Large language models (LLMs) are susceptible to hallucinations, which can lead to incorrect or misleading outputs.<n>Retrieval-augmented generation (RAG) is a promising approach to mitigate hallucinations by leveraging external knowledge sources.<n>In this paper, we study a poisoning attack on RAG systems named POISONCRAFT, which can mislead the model to refer to fraudulent websites.
arXiv Detail & Related papers (2025-05-10T09:36:28Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - Retrievals Can Be Detrimental: A Contrastive Backdoor Attack Paradigm on Retrieval-Augmented Diffusion Models [37.66349948811172]
Diffusion models (DMs) have recently demonstrated remarkable generation capability.<n>Recent studies empower DMs with the advanced Retrieval-Augmented Generation (RAG) technique.<n>RAG enhances DMs' generation and generalization ability while significantly reducing model parameters.<n>Despite the great success, RAG may introduce novel security issues that warrant further investigation.
arXiv Detail & Related papers (2025-01-23T02:42:28Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) systems have emerged as a promising solution to mitigate hallucinations.<n>RAG systems are vulnerable to adversarial poisoning attacks, where malicious passages injected into the retrieval corpus can mislead models into producing factually incorrect outputs.<n>We present a rigorously controlled empirical study of how RAG systems behave under such attacks and how their robustness can be improved.
arXiv Detail & Related papers (2024-12-21T17:31:52Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.<n>Our research identifies two critical latent factors affecting RAG's confidence in its predictions.<n>We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models [21.01313168005792]
We reveal the vulnerabilities of Retrieval-Enhanced Generative (RAG) models when faced with black-box attacks for opinion manipulation.
We explore the impact of such attacks on user cognition and decision-making.
arXiv Detail & Related papers (2024-07-18T17:55:55Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.