VL-SAFE: Vision-Language Guided Safety-Aware Reinforcement Learning with World Models for Autonomous Driving
- URL: http://arxiv.org/abs/2505.16377v1
- Date: Thu, 22 May 2025 08:29:59 GMT
- Title: VL-SAFE: Vision-Language Guided Safety-Aware Reinforcement Learning with World Models for Autonomous Driving
- Authors: Yansong Qu, Zilin Huang, Zihao Sheng, Jiancong Chen, Sikai Chen, Samuel Labi,
- Abstract summary: Reinforcement learning (RL)-based autonomous driving policy learning faces critical limitations.<n>RL often fail to capture the true semantic meaning of "safety" in complex driving contexts.<n>We propose VL-SAFE, a world model-based safe RL framework with Vision-Language model (VLM)-as-safety-guidance paradigm.
- Score: 1.9242820889313577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL)-based autonomous driving policy learning faces critical limitations such as low sample efficiency and poor generalization; its reliance on online interactions and trial-and-error learning is especially unacceptable in safety-critical scenarios. Existing methods including safe RL often fail to capture the true semantic meaning of "safety" in complex driving contexts, leading to either overly conservative driving behavior or constraint violations. To address these challenges, we propose VL-SAFE, a world model-based safe RL framework with Vision-Language model (VLM)-as-safety-guidance paradigm, designed for offline safe policy learning. Specifically, we construct offline datasets containing data collected by expert agents and labeled with safety scores derived from VLMs. A world model is trained to generate imagined rollouts together with safety estimations, allowing the agent to perform safe planning without interacting with the real environment. Based on these imagined trajectories and safety evaluations, actor-critic learning is conducted under VLM-based safety guidance to optimize the driving policy more safely and efficiently. Extensive evaluations demonstrate that VL-SAFE achieves superior sample efficiency, generalization, safety, and overall performance compared to existing baselines. To the best of our knowledge, this is the first work that introduces a VLM-guided world model-based approach for safe autonomous driving. The demo video and code can be accessed at: https://ys-qu.github.io/vlsafe-website/
Related papers
- HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model [52.72318433518926]
Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content.<n>We introduce a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations.<n>We propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head.
arXiv Detail & Related papers (2025-06-05T07:26:34Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Safe Reinforcement Learning [10.844235123282056]
We propose SafeVLA, a novel algorithm designed to integrate safety into vision-language--action models (VLAs)<n>SafeVLA balances safety and task performance by employing large-scale constrained learning within simulated environments.<n>We demonstrate that SafeVLA outperforms the current state-of-the-art method in both safety and task performance.
arXiv Detail & Related papers (2025-03-05T13:16:55Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
We propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge.<n>To explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic.<n>Our Multimodal Retrieval-Augmented Generation model leverages video, control signals, and environmental attributes to learn from past driving experiences.
arXiv Detail & Related papers (2025-02-28T21:53:47Z) - CurricuVLM: Towards Safe Autonomous Driving via Personalized Safety-Critical Curriculum Learning with Vision-Language Models [1.6612510324510592]
CurricuVLM is a novel framework that enables personalized curriculum learning for autonomous driving agents.<n>Our approach exploits Vision-Language Models (VLMs) to analyze agent behavior, identify performance weaknesses, and dynamically generate tailored training scenarios.<n>CurricuVLM outperforms state-of-the-art baselines across both regular and safety-critical scenarios.
arXiv Detail & Related papers (2025-02-21T00:42:40Z) - ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning [48.536695794883826]
We present ActSafe, a novel model-based RL algorithm for safe and efficient exploration.<n>We show that ActSafe guarantees safety during learning while also obtaining a near-optimal policy in finite time.<n>In addition, we propose a practical variant of ActSafe that builds on latest model-based RL advancements.
arXiv Detail & Related papers (2024-10-12T10:46:02Z) - FOSP: Fine-tuning Offline Safe Policy through World Models [3.7971075341023526]
Offline Safe Reinforcement Learning (RL) seeks to address safety constraints by learning from static datasets and restricting exploration.<n>In this paper, we aim to improve safety during the deployment of vision-based robotic tasks through online fine-tuning an offline pretrained policy.
arXiv Detail & Related papers (2024-07-06T03:22:57Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Safety-aware Causal Representation for Trustworthy Offline Reinforcement
Learning in Autonomous Driving [33.672722472758636]
offline Reinforcement Learning(RL) approaches exhibit notable efficacy in addressing sequential decision-making problems from offline datasets.
We introduce the saFety-aware strUctured Scenario representatION ( Fusion) to facilitate the learning of a generalizable end-to-end driving policy.
Empirical evidence in various driving scenarios attests that Fusion significantly enhances the safety and generalizability of autonomous driving agents.
arXiv Detail & Related papers (2023-10-31T18:21:24Z) - Guided Online Distillation: Promoting Safe Reinforcement Learning by
Offline Demonstration [75.51109230296568]
We argue that extracting expert policy from offline data to guide online exploration is a promising solution to mitigate the conserveness issue.
We propose Guided Online Distillation (GOLD), an offline-to-online safe RL framework.
GOLD distills an offline DT policy into a lightweight policy network through guided online safe RL training, which outperforms both the offline DT policy and online safe RL algorithms.
arXiv Detail & Related papers (2023-09-18T00:22:59Z) - How to Learn from Risk: Explicit Risk-Utility Reinforcement Learning for
Efficient and Safe Driving Strategies [1.496194593196997]
This paper proposes SafeDQN, which allows to make the behavior of autonomous vehicles safe and interpretable while still being efficient.
We show that SafeDQN finds interpretable and safe driving policies for a variety of scenarios and demonstrate how state-of-the-art saliency techniques can help to assess both risk and utility.
arXiv Detail & Related papers (2022-03-16T05:51:22Z) - SAFER: Data-Efficient and Safe Reinforcement Learning via Skill
Acquisition [59.94644674087599]
We propose SAFEty skill pRiors (SAFER), an algorithm that accelerates policy learning on complex control tasks under safety constraints.
Through principled training on an offline dataset, SAFER learns to extract safe primitive skills.
In the inference stage, policies trained with SAFER learn to compose safe skills into successful policies.
arXiv Detail & Related papers (2022-02-10T05:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.