Serious Games: Human-AI Interaction, Evolution, and Coevolution
- URL: http://arxiv.org/abs/2505.16388v1
- Date: Thu, 22 May 2025 08:41:37 GMT
- Title: Serious Games: Human-AI Interaction, Evolution, and Coevolution
- Authors: Nandini Doreswamy, Louise Horstmanshof,
- Abstract summary: The objective of this work was to examine some of the EGT models relevant to human-AI interaction, evolution, and coevolution.<n>The Hawk-Dove Game predicts balanced mixed-strategy equilibria based on the costs of conflict.<n>Iterated Prisoner's Dilemma suggests that repeated interaction may lead to cognitive coevolution.<n>The War of Attrition suggests that competition for resources may result in strategic coevolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The serious games between humans and AI have only just begun. Evolutionary Game Theory (EGT) models the competitive and cooperative strategies of biological entities. EGT could help predict the potential evolutionary equilibrium of humans and AI. The objective of this work was to examine some of the EGT models relevant to human-AI interaction, evolution, and coevolution. Of thirteen EGT models considered, three were examined: the Hawk-Dove Game, Iterated Prisoner's Dilemma, and the War of Attrition. This selection was based on the widespread acceptance and clear relevance of these models to potential human-AI evolutionary dynamics and coevolutionary trajectories. The Hawk-Dove Game predicts balanced mixed-strategy equilibria based on the costs of conflict. It also shows the potential for balanced coevolution rather than dominance. Iterated Prisoner's Dilemma suggests that repeated interaction may lead to cognitive coevolution. It demonstrates how memory and reciprocity can lead to cooperation. The War of Attrition suggests that competition for resources may result in strategic coevolution, asymmetric equilibria, and conventions on sharing resources. Therefore, EGT may provide a suitable framework to understand and predict the human-AI evolutionary dynamic. However, future research could extend beyond EGT and explore additional frameworks, empirical validation methods, and interdisciplinary perspectives. AI is being shaped by human input and is evolving in response to it. So too, neuroplasticity allows the human brain to grow and evolve in response to stimuli. If humans and AI converge in future, what might be the result of human neuroplasticity combined with an ever-evolving AI? Future research should be mindful of the ethical and cognitive implications of human-AI interaction, evolution, and coevolution.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
We argue that we cannot thoroughly map the social impacts of generative AI without mapping the social impacts of anthropomorphic AI.
anthropomorphic AI systems are increasingly prone to generating outputs that are perceived to be human-like.
arXiv Detail & Related papers (2024-10-11T04:57:41Z) - Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
We advocate for a shift toward viewing AI as a learning partner, akin to a student who learns from interactions with humans.
We suggest that a "third mind" emerges through collaborative human-AI relationships.
arXiv Detail & Related papers (2024-10-07T19:19:39Z) - Thorns and Algorithms: Navigating Generative AI Challenges Inspired by Giraffes and Acacias [1.3882452134471353]
The interplay between humans and Generative AI (Gen AI) draws an insightful parallel with the dynamic relationship between giraffes and acacias on the African Savannah.
This paper explores how, like young giraffes that are still mastering their environment, humans are in the early stages of adapting to and shaping Gen AI.
It delves into the strategies humans are developing and refining to help mitigate risks such as bias, misinformation, and privacy breaches.
arXiv Detail & Related papers (2024-07-16T03:53:25Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
Recent wave of generative AI has sparked excitement and concern over potentially superhuman levels of artificial intelligence.
At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans.
This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make?
arXiv Detail & Related papers (2023-10-31T18:07:07Z) - Discriminatory or Samaritan -- which AI is needed for humanity? An
Evolutionary Game Theory Analysis of Hybrid Human-AI populations [0.5308606035361203]
We study how different forms of AI influence the evolution of cooperation in a human population playing the one-shot Prisoner's Dilemma game.
We found that Samaritan AI agents that help everyone unconditionally, including defectors, can promote higher levels of cooperation in humans than Discriminatory AIs.
arXiv Detail & Related papers (2023-06-30T15:56:26Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Natural Selection Favors AIs over Humans [18.750116414606698]
We argue that the most successful AI agents will likely have undesirable traits.
If such agents have intelligence that exceeds that of humans, this could lead to humanity losing control of its future.
To counteract these risks and evolutionary forces, we consider interventions such as carefully designing AI agents' intrinsic motivations.
arXiv Detail & Related papers (2023-03-28T17:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.