論文の概要: On the reliability of feature attribution methods for speech classification
- arxiv url: http://arxiv.org/abs/2505.16406v1
- Date: Thu, 22 May 2025 08:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.16714
- Title: On the reliability of feature attribution methods for speech classification
- Title(参考訳): 音声分類における特徴属性法の信頼性について
- Authors: Gaofei Shen, Hosein Mohebbi, Arianna Bisazza, Afra Alishahi, Grzegorz Chrupała,
- Abstract要約: 入力タイプや集約,摂動時間といった要因が,標準特徴属性法の信頼性に与える影響について検討した。
音声領域に適用した場合,特徴属性に対する標準的アプローチは一般に信頼性が低いことが判明した。
- 参考スコア(独自算出の注目度): 5.0727678479257685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the capabilities of large-scale pre-trained models evolve, understanding the determinants of their outputs becomes more important. Feature attribution aims to reveal which parts of the input elements contribute the most to model outputs. In speech processing, the unique characteristics of the input signal make the application of feature attribution methods challenging. We study how factors such as input type and aggregation and perturbation timespan impact the reliability of standard feature attribution methods, and how these factors interact with characteristics of each classification task. We find that standard approaches to feature attribution are generally unreliable when applied to the speech domain, with the exception of word-aligned perturbation methods when applied to word-based classification tasks.
- Abstract(参考訳): 大規模事前学習モデルの能力が進化するにつれて、出力の行列式を理解することがより重要になる。
特徴属性は、入力要素のどの部分がモデル出力に最も寄与しているかを明らかにすることを目的としている。
音声処理において、入力信号の特徴は特徴帰属法の適用を困難にしている。
入力タイプや集約,摂動時間といった要因が,標準特徴属性法の信頼性に与える影響と,これらの要因が各分類課題の特徴とどのように相互作用するかを検討する。
音声領域に適用した場合,特徴属性に対する標準的アプローチは,単語ベースの分類タスクに適用した場合に,単語整合摂動法を除くと信頼性が低いことが判明した。
関連論文リスト
- Greedy feature selection: Classifier-dependent feature selection via
greedy methods [2.4374097382908477]
本研究の目的は, グリージーな特徴選択に追随する特徴選択と呼ばれる, 分類タスクにおける特徴ランク付けのための新しいアプローチを導入することである。
このようなスキームの利点は、Vapnik-Chervonenkis(VC)次元やカーネルアライメントといったモデルキャパシティインジケータの観点から理論的に研究されている。
論文 参考訳(メタデータ) (2024-03-08T08:12:05Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Towards Procedural Fairness: Uncovering Biases in How a Toxic Language
Classifier Uses Sentiment Information [7.022948483613112]
この研究は、不公平なプロセスが不公平な結果をもたらす手続き的公正性を評価するための一歩である。
生成された知識は、トレーニングデータセットにおいてアイデンティティ用語以外の重要な概念が適切に表現されていることを保証するために、デバイアス技術(debiasing techniques)をガイドすることができる。
論文 参考訳(メタデータ) (2022-10-19T16:03:25Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Feature Selection for Discovering Distributional Treatment Effect
Modifiers [37.09619678733784]
治療効果の違いに関連する特徴を明らかにするための枠組みを提案する。
特徴属性が潜在的結果分布の相違にどの程度強く影響するかを定量化する特徴重要度尺度を導出する。
そこで我々は,I型エラー率を所望レベルまで制御できる特徴選択アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-01T14:25:32Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
因果推論に基づく因果意味生成モデル(CSG)を提案し,その2つの要因を別々にモデル化する。
CSGはトレーニングデータに適合させることで意味的因子を識別できることを示し、この意味的識別はOOD一般化誤差の有界性を保証する。
論文 参考訳(メタデータ) (2020-11-03T13:16:05Z) - Fantastic Features and Where to Find Them: Detecting Cognitive
Impairment with a Subsequence Classification Guided Approach [6.063165888023164]
本稿では、逐次機械学習モデルとドメイン知識を活用して、パフォーマンス向上に役立つ機能を予測する機能エンジニアリングの新しいアプローチについて説明する。
本手法により得られた特徴を用いた場合,CI分類精度が強いベースラインよりも2.3%向上することが実証された。
論文 参考訳(メタデータ) (2020-10-13T17:57:18Z) - Nonparametric Feature Impact and Importance [0.6123324869194193]
データ上で直接動作する部分依存曲線から導かれる特徴的影響と重要性の数学的定義を与える。
品質を評価するために、これらの定義によってランク付けされた特徴は、既存の特徴選択技術と競合することを示す。
論文 参考訳(メタデータ) (2020-06-08T17:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。