Teaching Large Language Models to Maintain Contextual Faithfulness via Synthetic Tasks and Reinforcement Learning
- URL: http://arxiv.org/abs/2505.16483v1
- Date: Thu, 22 May 2025 10:10:07 GMT
- Title: Teaching Large Language Models to Maintain Contextual Faithfulness via Synthetic Tasks and Reinforcement Learning
- Authors: Shuzheng Si, Haozhe Zhao, Cheng Gao, Yuzhuo Bai, Zhitong Wang, Bofei Gao, Kangyang Luo, Wenhao Li, Yufei Huang, Gang Chen, Fanchao Qi, Minjia Zhang, Baobao Chang, Maosong Sun,
- Abstract summary: We propose a systematic framework, CANOE, to improve the faithfulness of large language models (LLMs) in both short-form and long-form generation tasks without human annotations.<n>Also, we propose Dual-GRPO, a rule-based reinforcement learning method that includes three tailored rule-based rewards derived from synthesized short-form QA data.<n> Experimental results show that CANOE greatly improves the faithfulness of LLMs across 11 different downstream tasks, even outperforming the most advanced LLMs.
- Score: 80.27561080938747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Teaching large language models (LLMs) to be faithful in the provided context is crucial for building reliable information-seeking systems. Therefore, we propose a systematic framework, CANOE, to improve the faithfulness of LLMs in both short-form and long-form generation tasks without human annotations. Specifically, we first synthesize short-form question-answering (QA) data with four diverse tasks to construct high-quality and easily verifiable training data without human annotation. Also, we propose Dual-GRPO, a rule-based reinforcement learning method that includes three tailored rule-based rewards derived from synthesized short-form QA data, while simultaneously optimizing both short-form and long-form response generation. Notably, Dual-GRPO eliminates the need to manually label preference data to train reward models and avoids over-optimizing short-form generation when relying only on the synthesized short-form QA data. Experimental results show that CANOE greatly improves the faithfulness of LLMs across 11 different downstream tasks, even outperforming the most advanced LLMs, e.g., GPT-4o and OpenAI o1.
Related papers
- Rethinking Data Synthesis: A Teacher Model Training Recipe with Interpretation [12.736045604858738]
Recent advances in large language model (LLM) training have highlighted the need for diverse, high-quality instruction data.<n>We propose a paradigm shift named textbfNOMAD by investigating how to specifically train models for data generation.
arXiv Detail & Related papers (2024-10-27T07:38:39Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Self-Boosting Large Language Models with Synthetic Preference Data [97.94185115047999]
We introduce SynPO, a self-boosting paradigm that leverages synthetic preference data for model alignment.
After four SynPO iterations, Llama3-8B and Mistral-7B show significant enhancements in instruction-following abilities.
SynPO improves the general performance of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the well-recognized Open LLM leaderboard.
arXiv Detail & Related papers (2024-10-09T14:57:31Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.<n>The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.<n>We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Mixed Preference Optimization: Reinforcement Learning with Data Selection and Better Reference Model [3.300814846990438]
Large Language Models (LLMs) have become increasingly popular due to their ability to process and generate natural language.<n>As they are trained on massive datasets of text, LLMs can inherit harmful biases and produce outputs that are not aligned with human values.<n>This paper studies two main approaches to LLM alignment: Reinforcement Learning with Human Feedback (RLHF) and contrastive learning-based methods like Direct Preference Optimization (DPO)<n>By analyzing the stability and robustness of RLHF and DPO, we propose MPO, a novel method that mitigates the weaknesses of both approaches.
arXiv Detail & Related papers (2024-03-28T14:15:10Z) - Instructed Language Models with Retrievers Are Powerful Entity Linkers [87.16283281290053]
Instructed Generative Entity Linker (INSGENEL) is the first approach that enables casual language models to perform entity linking over knowledge bases.
INSGENEL outperforms previous generative alternatives with +6.8 F1 points gain on average.
arXiv Detail & Related papers (2023-11-06T16:38:51Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Enabling Language Models to Implicitly Learn Self-Improvement [49.16868302881804]
Large Language Models (LLMs) have demonstrated remarkable capabilities in open-ended text generation tasks.
We propose an ImPlicit Self-ImprovemenT (PIT) framework that implicitly learns the improvement goal from human preference data.
arXiv Detail & Related papers (2023-10-02T04:29:40Z) - Principle-Driven Self-Alignment of Language Models from Scratch with
Minimal Human Supervision [84.31474052176343]
Recent AI-assistant agents, such as ChatGPT, rely on supervised fine-tuning (SFT) with human annotations and reinforcement learning from human feedback to align the output with human intentions.
This dependence can significantly constrain the true potential of AI-assistant agents due to the high cost of obtaining human supervision.
We propose a novel approach called SELF-ALIGN, which combines principle-driven reasoning and the generative power of LLMs for the self-alignment of AI agents with minimal human supervision.
arXiv Detail & Related papers (2023-05-04T17:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.