Self-Boosting Large Language Models with Synthetic Preference Data
- URL: http://arxiv.org/abs/2410.06961v1
- Date: Wed, 9 Oct 2024 14:57:31 GMT
- Title: Self-Boosting Large Language Models with Synthetic Preference Data
- Authors: Qingxiu Dong, Li Dong, Xingxing Zhang, Zhifang Sui, Furu Wei,
- Abstract summary: We introduce SynPO, a self-boosting paradigm that leverages synthetic preference data for model alignment.
After four SynPO iterations, Llama3-8B and Mistral-7B show significant enhancements in instruction-following abilities.
SynPO improves the general performance of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the well-recognized Open LLM leaderboard.
- Score: 97.94185115047999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Through alignment with human preferences, Large Language Models (LLMs) have advanced significantly in generating honest, harmless, and helpful responses. However, collecting high-quality preference data is a resource-intensive and creativity-demanding process, especially for the continual improvement of LLMs. We introduce SynPO, a self-boosting paradigm that leverages synthetic preference data for model alignment. SynPO employs an iterative mechanism wherein a self-prompt generator creates diverse prompts, and a response improver refines model responses progressively. This approach trains LLMs to autonomously learn the generative rewards for their own outputs and eliminates the need for large-scale annotation of prompts and human preferences. After four SynPO iterations, Llama3-8B and Mistral-7B show significant enhancements in instruction-following abilities, achieving over 22.1% win rate improvements on AlpacaEval 2.0 and ArenaHard. Simultaneously, SynPO improves the general performance of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the well-recognized Open LLM leaderboard.
Related papers
- Advancing Large Language Model Attribution through Self-Improving [32.77250400438304]
We present START, a framework for improving the attribution capability of large language models (LLMs)
START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation.
Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average.
arXiv Detail & Related papers (2024-10-17T07:55:33Z) - Boosting Reward Model with Preference-Conditional Multi-Aspect Synthetic Data Generation [62.9933120822879]
RMBoost is a novel synthetic preference data generation paradigm.
It reduces labeling noise since preference pairs are constructed intentionally.
It significantly boosts the performance of four distinct reward models.
arXiv Detail & Related papers (2024-07-22T19:21:55Z) - UICoder: Finetuning Large Language Models to Generate User Interface Code through Automated Feedback [21.858896845159208]
Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs.
Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model.
Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset.
arXiv Detail & Related papers (2024-06-11T21:53:46Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Aligning Large Language Models through Synthetic Feedback [43.84431341195111]
We propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations.
In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively.
arXiv Detail & Related papers (2023-05-23T06:41:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.