論文の概要: Incremental Sequence Classification with Temporal Consistency
- arxiv url: http://arxiv.org/abs/2505.16548v1
- Date: Thu, 22 May 2025 11:37:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.258379
- Title: Incremental Sequence Classification with Temporal Consistency
- Title(参考訳): 時間的整合性を考慮したインクリメンタルシーケンス分類
- Authors: Lucas Maystre, Gabriel Barello, Tudor Berariu, Aleix Cambray, Rares Dolga, Alvaro Ortega Gonzalez, Andrei Nica, David Barber,
- Abstract要約: 逐次シーケンス分類の問題に対処し、シーケンス内の新しい要素が明らかにされるにつれて予測が更新される。
逐次予測を満足する時間的整合性条件を利用して、逐次シーケンス分類器を訓練するための新しい損失関数を開発する。
以上の結果から,本手法で訓練したモデルでは,数個のトークンを観測した結果,期待できる世代と期待できない世代を区別できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 9.65650774513798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of incremental sequence classification, where predictions are updated as new elements in the sequence are revealed. Drawing on temporal-difference learning from reinforcement learning, we identify a temporal-consistency condition that successive predictions should satisfy. We leverage this condition to develop a novel loss function for training incremental sequence classifiers. Through a concrete example, we demonstrate that optimizing this loss can offer substantial gains in data efficiency. We apply our method to text classification tasks and show that it improves predictive accuracy over competing approaches on several benchmark datasets. We further evaluate our approach on the task of verifying large language model generations for correctness in grade-school math problems. Our results show that models trained with our method are better able to distinguish promising generations from unpromising ones after observing only a few tokens.
- Abstract(参考訳): 逐次シーケンス分類の問題に対処し、シーケンス内の新しい要素が明らかにされるにつれて予測が更新される。
強化学習からの時間差学習に基づいて、逐次予測が満足すべき時間差条件を特定する。
我々はこの条件を利用して、インクリメンタルシーケンス分類器を訓練するための新しい損失関数を開発した。
具体的な例を通して、この損失を最適化することで、データ効率が大幅に向上することを示した。
本手法をテキスト分類タスクに適用し,複数のベンチマークデータセットにおいて競合する手法よりも予測精度が向上することを示す。
小学校数学問題における大規模言語モデル生成の正当性検証の課題に対するアプローチをさらに評価する。
以上の結果から,本手法で訓練したモデルでは,数個のトークンを観測した結果,期待できる世代と期待できない世代を区別できる可能性が示唆された。
関連論文リスト
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
いくつかの自己回帰モデルは、入力シーケンスが処理されたときに学習でき、パラメータの変更を受けずに、それを行うように明示的に訓練されていない。
我々は,新しい入力が明らかになったときにモデルを調整するための補助学習アルゴリズムが,標準の次トーケン予測誤差最小化によって生まれることを示す。
本研究は、自己回帰損失最小化の産物としてコンテキスト内学習を説明し、新しい最適化ベースのトランスフォーマー層の設計を通知する。
論文 参考訳(メタデータ) (2023-09-11T22:42:50Z) - Predictive Coding beyond Correlations [59.47245250412873]
このようなアルゴリズムのうちの1つは、予測符号化と呼ばれ、因果推論タスクを実行することができるかを示す。
まず、予測符号化の推論過程における簡単な変化が、因果グラフを再利用したり再定義したりすることなく、介入を計算できることを示す。
論文 参考訳(メタデータ) (2023-06-27T13:57:16Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Prototypical quadruplet for few-shot class incremental learning [24.814045065163135]
改良されたコントラスト損失を用いて,より優れた埋め込み空間を同定し,分類ロバスト性を向上させる手法を提案する。
我々のアプローチは、新しいクラスで訓練された場合でも、埋め込み空間で以前獲得した知識を保っている。
提案手法の有効性は,新しいクラスでモデルを訓練した後,組込み空間がそのままであることを示すとともに,各セッションの精度で既存の最先端アルゴリズムより優れていることを示すことで実証する。
論文 参考訳(メタデータ) (2022-11-05T17:19:14Z) - Checklist Models for Improved Output Fluency in Piano Fingering
Prediction [33.52847881359949]
ピアノ音楽の指先予測のための新しい手法を提案する。
我々は、近年の予測の表現を維持する強化学習を通じて訓練されたチェックリストシステムを提案する。
これらの指標に対する改善に直接寄与する性能の顕著な向上を示す。
論文 参考訳(メタデータ) (2022-09-12T21:27:52Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Diversity Enhanced Active Learning with Strictly Proper Scoring Rules [4.81450893955064]
テキスト分類のための能動学習(AL)のための獲得関数について検討する。
我々は、期待損失削減法(ELR)を、ログ確率や負平均二乗誤差などの(厳密な)スコアの増加を推定するために変換する。
BEMPSを用いた平均二乗誤差とログ確率を用いることで、ロバストな取得関数が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T05:02:11Z) - $k$-Neighbor Based Curriculum Sampling for Sequence Prediction [22.631763991832862]
言語モデルにおける多段階予測は、トレーニングとテスト時間プロセスの相違により困難である。
教師方針を段階的に変更するカリキュラム学習に基づく手法であるtextitNearest-Neighbor Replacement Samplingを提案する。
本研究では, 2つの言語モデリングベンチマークについて報告し, スケジュールされたサンプリングと併用することで, 性能をさらに向上させる方法を提案する。
論文 参考訳(メタデータ) (2021-01-22T20:07:29Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
関連ラベルを「ターゲット語」として生成するためにシーケンス・ツー・シーケンス・モデルをどのように訓練するかを示す。
提案手法は,データポーラ方式におけるエンコーダのみのモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-03-14T22:29:50Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
金融時系列予測のための表現学習フレームワークを提案する。
本稿では、まず時系列データからコンパクトな表現を学習し、次に学習した表現を用いて、時系列の動きを予測するためのより単純なモデルを訓練する。
論文 参考訳(メタデータ) (2020-02-18T15:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。