SPaRC: A Spatial Pathfinding Reasoning Challenge
- URL: http://arxiv.org/abs/2505.16686v1
- Date: Thu, 22 May 2025 13:53:50 GMT
- Title: SPaRC: A Spatial Pathfinding Reasoning Challenge
- Authors: Lars Benedikt Kaesberg, Jan Philip Wahle, Terry Ruas, Bela Gipp,
- Abstract summary: SPaRC is a dataset of 1,000 2D grid pathfinding puzzles to evaluate spatial and symbolic reasoning.<n>Humans achieve near-perfect accuracy (98.0%; 94.5% on hard puzzles), while the best reasoning models, such as o4-mini, struggle (15.8%; 1.1% on hard puzzles)
- Score: 7.140449861888235
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing reasoning datasets saturate and fail to test abstract, multi-step problems, especially pathfinding and complex rule constraint satisfaction. We introduce SPaRC (Spatial Pathfinding Reasoning Challenge), a dataset of 1,000 2D grid pathfinding puzzles to evaluate spatial and symbolic reasoning, requiring step-by-step planning with arithmetic and geometric rules. Humans achieve near-perfect accuracy (98.0%; 94.5% on hard puzzles), while the best reasoning models, such as o4-mini, struggle (15.8%; 1.1% on hard puzzles). Models often generate invalid paths (>50% of puzzles for o4-mini), and reasoning tokens reveal they make errors in navigation and spatial logic. Unlike humans, who take longer on hard puzzles, models fail to scale test-time compute with difficulty. Allowing models to make multiple solution attempts improves accuracy, suggesting potential for better spatial reasoning with improved training and efficient test-time scaling methods. SPaRC can be used as a window into models' spatial reasoning limitations and drive research toward new methods that excel in abstract, multi-step problem-solving.
Related papers
- Frontier LLMs Still Struggle with Simple Reasoning Tasks [53.497499123166804]
This work studies the performance of frontier language models on a broad set of "easy" reasoning problems.<n>We create a suite of procedurally generated simple reasoning tasks, including counting, first-order logic, proof trees, and travel planning.<n>We show that even state-of-the-art thinking models consistently fail on such problems and for similar reasons.
arXiv Detail & Related papers (2025-07-09T22:22:49Z) - PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts [47.92619068073141]
We introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning.<n>Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy.<n>Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning.
arXiv Detail & Related papers (2025-06-06T16:17:09Z) - Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations [61.235500325327585]
Existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation.<n>We introduce STARE, a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through visual simulation.<n>Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks.
arXiv Detail & Related papers (2025-06-05T05:09:46Z) - THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models [65.39456695678713]
We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists.<n>We find that in general, reasoning models are poorly calibrated, particularly on easy problems.<n>We introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
arXiv Detail & Related papers (2025-04-17T22:16:30Z) - Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT? [59.418994222096885]
We conduct a detailed analysis of model performance on the AIME24 dataset.<n>We categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard)<n>We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT-1K instances.<n>Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills.
arXiv Detail & Related papers (2025-04-16T03:39:38Z) - EnigmaEval: A Benchmark of Long Multimodal Reasoning Challenges [17.056693711040747]
We introduce EnigmaEval, a dataset of problems and solutions derived from puzzle competitions and events.<n>This dataset probes models' ability to perform implicit knowledge synthesis and multi-step deductive reasoning.<n>The benchmark comprises 1184 puzzles of varying complexity requiring teams of skilled solvers hours to days to complete.
arXiv Detail & Related papers (2025-02-13T00:18:34Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
We observe significant performance drops on MATH-P-Hard across various models.<n>We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills.
arXiv Detail & Related papers (2025-02-10T13:31:46Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
We introduce Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths.
Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance.
We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions.
arXiv Detail & Related papers (2024-10-07T06:37:25Z) - Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious
Challenges in Multimodal Reasoning [24.386388107656334]
This paper introduces the novel task of multimodal puzzle solving, framed within the context of visual question-answering.
We present a new dataset, AlgoVQA, designed to challenge and evaluate the capabilities of multimodal language models in solving algorithmic puzzles.
arXiv Detail & Related papers (2024-03-06T17:15:04Z) - PuzzLing Machines: A Challenge on Learning From Small Data [64.513459448362]
We introduce a challenge on learning from small data, PuzzLing Machines, which consists of Rosetta Stone puzzles from Linguistic Olympiads for high school students.
Our challenge contains around 100 puzzles covering a wide range of linguistic phenomena from 81 languages.
We show that both simple statistical algorithms and state-of-the-art deep neural models perform inadequately on this challenge, as expected.
arXiv Detail & Related papers (2020-04-27T20:34:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.