Don't "Overthink" Passage Reranking: Is Reasoning Truly Necessary?
- URL: http://arxiv.org/abs/2505.16886v1
- Date: Thu, 22 May 2025 16:41:37 GMT
- Title: Don't "Overthink" Passage Reranking: Is Reasoning Truly Necessary?
- Authors: Nour Jedidi, Yung-Sung Chuang, James Glass, Jimmy Lin,
- Abstract summary: We compare reasoning-based pointwise rerankers (ReasonRR) to standard, non-reasoning pointwise rerankers (StandardRR) under identical training conditions.<n>We find that ReasonRR-NoReason is surprisingly more effective than ReasonRR.
- Score: 60.725923225442095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing success of reasoning models across complex natural language tasks, researchers in the Information Retrieval (IR) community have begun exploring how similar reasoning capabilities can be integrated into passage rerankers built on Large Language Models (LLMs). These methods typically employ an LLM to produce an explicit, step-by-step reasoning process before arriving at a final relevance prediction. But, does reasoning actually improve reranking accuracy? In this paper, we dive deeper into this question, studying the impact of the reasoning process by comparing reasoning-based pointwise rerankers (ReasonRR) to standard, non-reasoning pointwise rerankers (StandardRR) under identical training conditions, and observe that StandardRR generally outperforms ReasonRR. Building on this observation, we then study the importance of reasoning to ReasonRR by disabling its reasoning process (ReasonRR-NoReason), and find that ReasonRR-NoReason is surprisingly more effective than ReasonRR. Examining the cause of this result, our findings reveal that reasoning-based rerankers are limited by the LLM's reasoning process, which pushes it toward polarized relevance scores and thus fails to consider the partial relevance of passages, a key factor for the accuracy of pointwise rerankers.
Related papers
- Lost at the Beginning of Reasoning [82.18834329384514]
We show that the first reasoning step exerts a disproportionately large influence on the final prediction.<n>We propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps.<n>We introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities.
arXiv Detail & Related papers (2025-06-27T09:53:57Z) - Reason from Future: Reverse Thought Chain Enhances LLM Reasoning [18.637191592875155]
We propose a novel reasoning paradigm called Reason from Future (RFF)<n>RFF generates reasoning paths by bidirectional reasoning that combines top-down planning with bottom-up reasoning accumulation.<n>RFF outperforms conventional paradigms with higher accuracy and less searching space to solve complex tasks.
arXiv Detail & Related papers (2025-06-04T08:03:17Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.<n>We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.<n>Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning.<n>This paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation.<n>We show that employing these critical questions can improve the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-19T18:51:30Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Making Reasoning Matter: Measuring and Improving Faithfulness of Chain-of-Thought Reasoning [38.60086807496399]
Large language models (LLMs) have been shown to perform better when asked to reason step-by-step before answering a question.
It is unclear to what degree the model's final answer is faithful to the stated reasoning steps.
We introduce FRODO, a framework to tailor small-sized LMs to generate correct reasoning steps and robustly reason over these steps.
arXiv Detail & Related papers (2024-02-21T17:23:59Z) - Large Language Models as an Indirect Reasoner: Contrapositive and Contradiction for Automated Reasoning [74.90592233107712]
We propose a Direct-Indirect Reasoning (DIR) method, which considers Direct Reasoning (DR) and Indirect Reasoning (IR) as multiple parallel reasoning paths that are merged to derive the final answer.<n>Our DIR method is simple yet effective and can be straightforwardly integrated with existing variants of CoT methods.
arXiv Detail & Related papers (2024-02-06T03:41:12Z) - REFINER: Reasoning Feedback on Intermediate Representations [47.36251998678097]
We introduce REFINER, a framework for finetuning language models to generate intermediate inferences.
REFINER works by interacting with a critic model that provides automated feedback on the reasoning.
Empirical evaluations show significant improvements over baseline LMs of comparable scale.
arXiv Detail & Related papers (2023-04-04T15:57:28Z) - Evaluate Confidence Instead of Perplexity for Zero-shot Commonsense
Reasoning [85.1541170468617]
This paper reconsiders the nature of commonsense reasoning and proposes a novel commonsense reasoning metric, Non-Replacement Confidence (NRC)
Our proposed novel method boosts zero-shot performance on two commonsense reasoning benchmark datasets and further seven commonsense question-answering datasets.
arXiv Detail & Related papers (2022-08-23T14:42:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.