FoMoH: A clinically meaningful foundation model evaluation for structured electronic health records
- URL: http://arxiv.org/abs/2505.16941v3
- Date: Mon, 16 Jun 2025 17:03:07 GMT
- Title: FoMoH: A clinically meaningful foundation model evaluation for structured electronic health records
- Authors: Chao Pang, Vincent Jeanselme, Young Sang Choi, Xinzhuo Jiang, Zilin Jing, Aparajita Kashyap, Yuta Kobayashi, Yanwei Li, Florent Pollet, Karthik Natarajan, Shalmali Joshi,
- Abstract summary: Foundation models hold significant promise in healthcare, given their capacity to extract meaningful representations independent of downstream tasks.<n>There is little consensus on these models' potential for clinical utility due to the lack of desiderata of comprehensive and meaningful tasks.<n>We evaluate state-of-the-art foundation models on EHR data consisting of 5 million patients from Columbia University Irving Medical Center.
- Score: 15.619686828044543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models hold significant promise in healthcare, given their capacity to extract meaningful representations independent of downstream tasks. This property has enabled state-of-the-art performance across several clinical applications trained on structured electronic health record (EHR) data, even in settings with limited labeled data, a prevalent challenge in healthcare. However, there is little consensus on these models' potential for clinical utility due to the lack of desiderata of comprehensive and meaningful tasks and sufficiently diverse evaluations to characterize the benefit over conventional supervised learning. To address this gap, we propose a suite of clinically meaningful tasks spanning patient outcomes, early prediction of acute and chronic conditions, including desiderata for robust evaluations. We evaluate state-of-the-art foundation models on EHR data consisting of 5 million patients from Columbia University Irving Medical Center (CUMC), a large urban academic medical center in New York City, across 14 clinically relevant tasks. We measure overall accuracy, calibration, and subpopulation performance to surface tradeoffs based on the choice of pre-training, tokenization, and data representation strategies. Our study aims to advance the empirical evaluation of structured EHR foundation models and guide the development of future healthcare foundation models.
Related papers
- Foundation models for electronic health records: representation dynamics and transferability [0.16070672161045726]
Foundation models (FMs) trained on electronic health records have shown strong performance on a range of clinical prediction tasks.<n>We investigated the transferability of an FM trained on MIMIC-IV to an institutional EHR dataset at the University of Chicago Medical Center.<n>We assessed their ability to identify outlier patients and examined representation-space patient trajectories in relation to future clinical outcomes.
arXiv Detail & Related papers (2025-04-14T17:09:05Z) - Zero-shot Medical Event Prediction Using a Generative Pre-trained Transformer on Electronic Health Records [8.575985305475355]
We show that a foundation model trained on EHRs can perform predictive tasks in a zero-shot manner.<n>Unlike supervised approaches requiring extensive labeled data, our method enables the model to forecast a next medical event purely from a pretraining knowledge.
arXiv Detail & Related papers (2025-03-07T19:26:47Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Data-Centric Foundation Models in Computational Healthcare: A Survey [21.53211505568379]
Foundation models (FMs) as an emerging suite of AI techniques have struck a wave of opportunities in computational healthcare.
We discuss key perspectives in AI security, assessment, and alignment with human values.
We offer a promising outlook of FM-based analytics to enhance the performance of patient outcome and clinical workflow.
arXiv Detail & Related papers (2024-01-04T08:00:32Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - The Shaky Foundations of Clinical Foundation Models: A Survey of Large
Language Models and Foundation Models for EMRs [5.7482228499062975]
We review over 80 foundation models trained on non-imaging EMR data.
We find that most models are trained on small, narrowly-scoped clinical datasets.
We propose an improved evaluation framework for measuring the benefits of clinical foundation models.
arXiv Detail & Related papers (2023-03-22T23:54:14Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
Previous research has shown that jointly using clinical notes with electronic health record data improved predictive performance for patient monitoring.
We first confirm that performance significantly improves over state-of-the-art EHR data models when combining EHR data and clinical notes.
We then provide an analysis showing improvements arise almost exclusively from a subset of notes containing broader context on patient state rather than clinician notes.
arXiv Detail & Related papers (2022-12-06T15:18:57Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.