論文の概要: Invisible Prompts, Visible Threats: Malicious Font Injection in External Resources for Large Language Models
- arxiv url: http://arxiv.org/abs/2505.16957v1
- Date: Thu, 22 May 2025 17:36:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.510443
- Title: Invisible Prompts, Visible Threats: Malicious Font Injection in External Resources for Large Language Models
- Title(参考訳): Invisible Prompts, Visible Threats: Malicious Font Injection in external Resources for Large Language Models
- Authors: Junjie Xiong, Changjia Zhu, Shuhang Lin, Chong Zhang, Yongfeng Zhang, Yao Liu, Lingyao Li,
- Abstract要約: 大規模言語モデル(LLM)は、リアルタイムWeb検索機能を備え、モデルコンテキストプロトコル(MCP)のようなプロトコルと統合されつつある。
この拡張は新たなセキュリティ脆弱性を導入する可能性がある。
本稿では,Webページなどの外部リソースに悪意あるフォント注入を施して,隠れた敵のプロンプトに対するLLM脆弱性を系統的に調査する。
- 参考スコア(独自算出の注目度): 29.879456712405204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly equipped with capabilities of real-time web search and integrated with protocols like Model Context Protocol (MCP). This extension could introduce new security vulnerabilities. We present a systematic investigation of LLM vulnerabilities to hidden adversarial prompts through malicious font injection in external resources like webpages, where attackers manipulate code-to-glyph mapping to inject deceptive content which are invisible to users. We evaluate two critical attack scenarios: (1) "malicious content relay" and (2) "sensitive data leakage" through MCP-enabled tools. Our experiments reveal that indirect prompts with injected malicious font can bypass LLM safety mechanisms through external resources, achieving varying success rates based on data sensitivity and prompt design. Our research underscores the urgent need for enhanced security measures in LLM deployments when processing external content.
- Abstract(参考訳): 大規模言語モデル(LLM)は、リアルタイムWeb検索機能を備え、モデルコンテキストプロトコル(MCP)のようなプロトコルと統合されている。
この拡張は新たなセキュリティ脆弱性を導入する可能性がある。
本稿では,Webページなどの外部リソースに悪意あるフォント注入を施し,攻撃者がコード・トゥ・グリフ・マッピングを操作し,ユーザが目に見えない偽装コンテンツを注入する,隠れた敵のプロンプトに対するLLM脆弱性の系統的な調査を行う。
我々は,(1)「悪意のあるコンテンツリレー」と(2)MPP対応ツールによる「センシティブなデータ漏洩」の2つの重要な攻撃シナリオを評価する。
実験の結果, インジェクトされた悪意フォントを用いた間接的なプロンプトは, 外部リソースを介してLCMの安全性機構をバイパスし, データの感度と設計の迅速性に基づいて, 様々な成功率を達成することができることがわかった。
本研究は,外部コンテンツ処理において,LCMデプロイメントにおけるセキュリティ対策の緊急化の必要性を浮き彫りにしている。
関連論文リスト
- AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジィングフレームワークであるAgentXploitを提案する。
我々は、AgentXploitをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Breaking the Prompt Wall (I): A Real-World Case Study of Attacking ChatGPT via Lightweight Prompt Injection [12.565784666173277]
本報告では,ChatGPTのような大規模言語モデルプラットフォームに対して,インジェクションのプロンプトがどう作用するかを示す実例を示す。
本稿では,ユーザ入力や Web ベース検索,システムレベルのエージェント命令を通じて,敵対的プロンプトをインジェクションする方法を示す。
論文 参考訳(メタデータ) (2025-04-20T05:59:00Z) - Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
本稿では,大規模言語モデル(LLM)の安全性を評価するための新しいアプローチを提案する。
我々は、プロンプトリークをLLMデプロイメントの安全性にとって重要な脅威と定義する。
我々は,協調エージェントが目的のLLMを探索・活用し,そのプロンプトを抽出するマルチエージェントシステムを実装した。
論文 参考訳(メタデータ) (2025-02-18T08:17:32Z) - Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks [88.84977282952602]
最近のMLセキュリティ文献は、整列型大規模言語モデル(LLM)に対する攻撃に焦点を当てている。
本稿では,LLMエージェントに特有のセキュリティとプライバシの脆弱性を分析する。
我々は、人気のあるオープンソースおよび商用エージェントに対する一連の実証的な攻撃を行い、その脆弱性の即時的な影響を実証した。
論文 参考訳(メタデータ) (2025-02-12T17:19:36Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Identifying and Mitigating Vulnerabilities in LLM-Integrated
Applications [37.316238236750415]
LLM統合アプリケーションのバックエンドとして,大規模言語モデル(LLM)がますます多くデプロイされている。
本研究では,ユーザとLLMがLLM統合アプリケーションを介して,中間で対話する環境について考察する。
悪意のあるアプリケーション開発者や外部からの脅威から生じる可能性のある潜在的な脆弱性を特定します。
我々は、内部の脅威と外部の脅威の両方を緩和する軽量で脅威に依存しない防御を開発する。
論文 参考訳(メタデータ) (2023-11-07T20:13:05Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
大規模言語モデル(LLM)は、様々なアプリケーションに統合されつつある。
本稿では、プロンプトインジェクション攻撃を用いて、攻撃者が元の命令をオーバーライドし、制御を採用する方法を示す。
我々は、コンピュータセキュリティの観点から、影響や脆弱性を体系的に調査する包括的な分類法を導出する。
論文 参考訳(メタデータ) (2023-02-23T17:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。