An Effective Training Framework for Light-Weight Automatic Speech Recognition Models
- URL: http://arxiv.org/abs/2505.16991v2
- Date: Wed, 28 May 2025 17:19:11 GMT
- Title: An Effective Training Framework for Light-Weight Automatic Speech Recognition Models
- Authors: Abdul Hannan, Alessio Brutti, Shah Nawaz, Mubashir Noman,
- Abstract summary: We introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model.<n>Our approach achieves three-fold training speed-up and up to 12.54% word error rate improvement.
- Score: 10.295690160466936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancement in deep learning encouraged developing large automatic speech recognition (ASR) models that achieve promising results while ignoring computational and memory constraints. However, deploying such models on low resource devices is impractical despite of their favorable performance. Existing approaches (pruning, distillation, layer skip etc.) transform the large models into smaller ones at the cost of significant performance degradation or require prolonged training of smaller models for better performance. To address these issues, we introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model ensuring considerably better performance in limited number of epochs. Comprehensive experimentation on ASR benchmarks reveals the efficacy of our approach, achieving three-fold training speed-up and up to 12.54% word error rate improvement.
Related papers
- Training Language Models to Reason Efficiently [14.390800014819439]
We use reinforcement learning to train large reasoning models to reason efficiently.<n>Our method incentivizes models to minimize unnecessary computational overhead while maintaining accuracy.<n> Experiments on two open-weight large reasoning models demonstrate significant reductions in inference cost while preserving most of the accuracy.
arXiv Detail & Related papers (2025-02-06T19:18:16Z) - Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
This paper focuses on compressing decoder-only transformer-based autoregressive models through structural weight pruning.<n>Specifically, we propose a training-free pruning method that calculates a numerical score with Newton's method for the Attention and modules, respectively.<n>To verify the effectiveness of our method, we provide both theoretical support and extensive experiments.
arXiv Detail & Related papers (2024-12-17T01:09:23Z) - AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies [36.645912291368546]
We present AquilaMoE, a cutting-edge bilingual 8*16B Mixture of Experts (MoE) language model with 8 experts with 16 billion parameters each.
This approach optimize performance while minimizing data requirements through a two-stage process.
We successfully trained a 16B model and subsequently the 8*16B AquilaMoE model, demonstrating significant improvements in performance and training efficiency.
arXiv Detail & Related papers (2024-08-13T02:07:00Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.<n>AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Exploring Effective Distillation of Self-Supervised Speech Models for
Automatic Speech Recognition [5.802425107635222]
Miniaturization for SSL models has become an important research direction of practical value.
We explore the effective distillation of HuBERT-based SSL models for automatic speech recognition (ASR)
A discriminative loss is introduced for HuBERT to enhance the distillation performance, especially in low-resource scenarios.
arXiv Detail & Related papers (2022-10-27T17:21:14Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
We present an efficient method of pretraining large-scale autoencoding language models using training signals generated by an auxiliary model.
We propose a recipe, namely "Model generated dEnoising TRaining Objective" (METRO)
The resultant models, METRO-LM, consisting of up to 5.4 billion parameters, achieve new state-of-the-art on the GLUE, SuperGLUE, and SQuAD benchmarks.
arXiv Detail & Related papers (2022-04-13T21:39:15Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.