Native Segmentation Vision Transformers
- URL: http://arxiv.org/abs/2505.16993v1
- Date: Thu, 22 May 2025 17:55:20 GMT
- Title: Native Segmentation Vision Transformers
- Authors: Guillem Brasó, Aljoša Ošep, Laura Leal-Taixé,
- Abstract summary: We propose an alternative design built around a content-aware grouping grouping, that dynamically assigns tokens to a reduced set based on image boundaries and semantic content.<n>We show that a careful design of our architecture enables the emergence of strong segmentation masks solely from grouping layers, that is without additional segmentation-specific heads.
- Score: 34.948673891967154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uniform downsampling remains the de facto standard for reducing spatial resolution in vision backbones. In this work, we propose an alternative design built around a content-aware spatial grouping layer, that dynamically assigns tokens to a reduced set based on image boundaries and their semantic content. Stacking our grouping layer across consecutive backbone stages results in hierarchical segmentation that arises natively in the feature extraction process, resulting in our coined Native Segmentation Vision Transformer. We show that a careful design of our architecture enables the emergence of strong segmentation masks solely from grouping layers, that is, without additional segmentation-specific heads. This sets the foundation for a new paradigm of native, backbone-level segmentation, which enables strong zero-shot results without mask supervision, as well as a minimal and efficient standalone model design for downstream segmentation tasks. Our project page is https://research.nvidia.com/labs/dvl/projects/native-segmentation.
Related papers
- A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
Unsupervised semantic segmentation aims to categorize each pixel in an image into a corresponding class without the use of annotated data.
We propose a lightweight clustering framework for unsupervised semantic segmentation.
Our framework achieves state-of-the-art results on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-11-30T15:33:42Z) - Fully and Weakly Supervised Referring Expression Segmentation with
End-to-End Learning [50.40482222266927]
Referring Expression (RES) is aimed at localizing and segmenting the target according to the given language expression.
We propose a parallel position- kernel-segmentation pipeline to better isolate and then interact with the localization and segmentation steps.
Our method is simple but surprisingly effective, outperforming all previous state-of-the-art RES methods on fully- and weakly-supervised settings.
arXiv Detail & Related papers (2022-12-17T08:29:33Z) - Framework-agnostic Semantically-aware Global Reasoning for Segmentation [29.69187816377079]
We propose a component that learns to project image features into latent representations and reason between them.
Our design encourages the latent regions to represent semantic concepts by ensuring that the activated regions are spatially disjoint.
Our latent tokens are semantically interpretable and diverse and provide a rich set of features that can be transferred to downstream tasks.
arXiv Detail & Related papers (2022-12-06T21:42:05Z) - SegViT: Semantic Segmentation with Plain Vision Transformers [91.50075506561598]
We explore the capability of plain Vision Transformers (ViTs) for semantic segmentation.
We propose the Attention-to-Mask (ATM) module, in which similarity maps between a set of learnable class tokens and the spatial feature maps are transferred to the segmentation masks.
Experiments show that our proposed SegVit using the ATM module outperforms its counterparts using the plain ViT backbone.
arXiv Detail & Related papers (2022-10-12T00:30:26Z) - Discovering Object Masks with Transformers for Unsupervised Semantic
Segmentation [75.00151934315967]
MaskDistill is a novel framework for unsupervised semantic segmentation.
Our framework does not latch onto low-level image cues and is not limited to object-centric datasets.
arXiv Detail & Related papers (2022-06-13T17:59:43Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
We take inspiration from traditional spectral segmentation methods by reframing image decomposition as a graph partitioning problem.
We find that these eigenvectors already decompose an image into meaningful segments, and can be readily used to localize objects in a scene.
By clustering the features associated with these segments across a dataset, we can obtain well-delineated, nameable regions.
arXiv Detail & Related papers (2022-05-16T17:47:44Z) - Unsupervised Hierarchical Semantic Segmentation with Multiview
Cosegmentation and Clustering Transformers [47.45830503277631]
Grouping naturally has levels of granularity, creating ambiguity in unsupervised segmentation.
We deliver the first data-driven unsupervised hierarchical semantic segmentation method called Hierarchical Segment Grouping (HSG)
arXiv Detail & Related papers (2022-04-25T04:40:46Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
Existing semantic segmentation approaches either aim to improve the object's inner consistency by modeling the global context, or refine objects detail along their boundaries by multi-scale feature fusion.
In this paper, a new paradigm for semantic segmentation is proposed.
Our insight is that appealing performance of semantic segmentation requires textitexplicitly modeling the object textitbody and textitedge, which correspond to the high and low frequency of the image.
We show that the proposed framework with various baselines or backbone networks leads to better object inner consistency and object boundaries.
arXiv Detail & Related papers (2020-07-20T12:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.