When Are Concepts Erased From Diffusion Models?
- URL: http://arxiv.org/abs/2505.17013v4
- Date: Fri, 30 May 2025 06:00:33 GMT
- Title: When Are Concepts Erased From Diffusion Models?
- Authors: Kevin Lu, Nicky Kriplani, Rohit Gandikota, Minh Pham, David Bau, Chinmay Hegde, Niv Cohen,
- Abstract summary: Concept erasure is the ability to selectively prevent a model from generating specific concepts.<n>We propose two conceptual models for the erasure mechanism in diffusion models.<n>To thoroughly assess whether a concept has been truly erased from the model, we introduce a suite of independent evaluations.
- Score: 44.89615668122767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept erasure, the ability to selectively prevent a model from generating specific concepts, has attracted growing interest, with various approaches emerging to address the challenge. However, it remains unclear how thoroughly these methods erase the target concept. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) reducing the likelihood of generating the target concept, and (ii) interfering with the model's internal guidance mechanisms. To thoroughly assess whether a concept has been truly erased from the model, we introduce a suite of independent evaluations. Our evaluation framework includes adversarial attacks, novel probing techniques, and analysis of the model's alternative generations in place of the erased concept. Our results shed light on the tension between minimizing side effects and maintaining robustness to adversarial prompts. Broadly, our work underlines the importance of comprehensive evaluation for erasure in diffusion models.
Related papers
- TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models [0.0]
Concept erasure aims to remove or suppress specific concept information in a generative model.<n>Trajectory-Constrained Attentional Concept Erasure (TRACE) is a novel method to erase targeted concepts from diffusion models.<n>TRACE achieves state-of-the-art performance, outperforming recent methods such as ANT, EraseAnything, and MACE in terms of removal efficacy and output quality.
arXiv Detail & Related papers (2025-05-29T10:15:22Z) - Erased or Dormant? Rethinking Concept Erasure Through Reversibility [8.454050090398713]
We evaluate two representative concept erasure methods, Unified Concept Editing and Erased Stable Diffusion.<n>We show that erased concepts often reemerge with substantial visual fidelity after minimal adaptation.<n>Our findings reveal critical limitations in existing concept erasure approaches.
arXiv Detail & Related papers (2025-05-22T03:26:46Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
This research introduces continual unlearning', a novel paradigm that enables the targeted removal of multiple specific concepts from foundational generative models.<n>We propose Decremental Unlearning without Generalization Erosion (DUGE) algorithm which selectively unlearns the generation of undesired concepts.
arXiv Detail & Related papers (2025-03-17T23:17:16Z) - Modular Customization of Diffusion Models via Blockwise-Parameterized Low-Rank Adaptation [73.16975077770765]
Modular customization is essential for applications like concept stylization and multi-concept customization.<n>Instant merging methods often cause identity loss and interference of individual merged concepts.<n>We propose BlockLoRA, an instant merging method designed to efficiently combine multiple concepts while accurately preserving individual concepts' identity.
arXiv Detail & Related papers (2025-03-11T16:10:36Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.<n>The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.<n> concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
We propose a novel concept domain correction framework named textbfDoCo (textbfDomaintextbfCorrection)<n>By aligning the output domains of sensitive and anchor concepts through adversarial training, our approach ensures comprehensive unlearning of target concepts.<n>We also introduce a concept-preserving gradient surgery technique that mitigates conflicting gradient components, thereby preserving the model's utility while unlearning specific concepts.
arXiv Detail & Related papers (2024-05-24T07:47:36Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.