論文の概要: When Are Concepts Erased From Diffusion Models?
- arxiv url: http://arxiv.org/abs/2505.17013v5
- Date: Fri, 07 Nov 2025 04:18:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 14:53:49.422911
- Title: When Are Concepts Erased From Diffusion Models?
- Title(参考訳): 拡散モデルから概念が消去されるのはいつか?
- Authors: Kevin Lu, Nicky Kriplani, Rohit Gandikota, Minh Pham, David Bau, Chinmay Hegde, Niv Cohen,
- Abstract要約: 概念消去では、ターゲット概念の生成を選択的に防止するためにモデルを変更する。
拡散モデルにおける消去機構の2つの概念モデルを提案する。
モデルから概念が真に消去されたかどうかを評価するため,独立した探索手法を包括的に導入する。
- 参考スコア(独自算出の注目度): 37.59943248660331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In concept erasure, a model is modified to selectively prevent it from generating a target concept. Despite the rapid development of new methods, it remains unclear how thoroughly these approaches remove the target concept from the model. We begin by proposing two conceptual models for the erasure mechanism in diffusion models: (i) interfering with the model's internal guidance processes, and (ii) reducing the unconditional likelihood of generating the target concept, potentially removing it entirely. To assess whether a concept has been truly erased from the model, we introduce a comprehensive suite of independent probing techniques: supplying visual context, modifying the diffusion trajectory, applying classifier guidance, and analyzing the model's alternative generations that emerge in place of the erased concept. Our results shed light on the value of exploring concept erasure robustness outside of adversarial text inputs, and emphasize the importance of comprehensive evaluations for erasure in diffusion models.
- Abstract(参考訳): 概念消去では、ターゲット概念の生成を選択的に防止するためにモデルを変更する。
新しい手法の急速な開発にもかかわらず、これらの手法がモデルからターゲット概念をどの程度徹底的に取り除いたかは定かではない。
まず,拡散モデルにおける消去機構の2つの概念モデルを提案する。
一 モデルの内部指導の過程に干渉すること、及び
(ii)ターゲット概念を生成できる無条件の可能性を低減し、完全に取り除く可能性がある。
モデルから概念が真に消去されたかどうかを評価するため、視覚的コンテキストの供給、拡散軌跡の修正、分類器指導の適用、消去された概念の代わりに出現するモデルの代替世代の分析など、独立した探索手法の総合的なスイートを導入する。
本研究の結果は, テキスト入力以外の概念消去の堅牢性を探求することの価値を浮き彫りにし, 拡散モデルにおける消去の総合的評価の重要性を強調した。
関連論文リスト
- TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models [0.0]
概念消去は、生成モデルにおいて特定の概念情報を削除または抑制することを目的としている。
Trajectory-Constrained Attentional Concept Erasure (TRACE) は拡散モデルから対象概念を消去する新しい手法である。
TRACEは最先端のパフォーマンスを実現し、ANT、EraseAnything、MACEといった最近の手法よりも、除去効率と出力品質の点で優れています。
論文 参考訳(メタデータ) (2025-05-29T10:15:22Z) - Erased or Dormant? Rethinking Concept Erasure Through Reversibility [8.454050090398713]
我々は、統一概念編集と消去安定拡散という2つの代表的な概念消去手法を評価する。
消去された概念は、最小限の適応の後、しばしばかなりの視覚的忠実度で再帰することを示す。
本研究は,既存の概念消去アプローチにおける限界を明らかにするものである。
論文 参考訳(メタデータ) (2025-05-22T03:26:46Z) - Continual Unlearning for Foundational Text-to-Image Models without Generalization Erosion [56.35484513848296]
本研究は,基本生成モデルから複数の特定の概念を対象とする除去を可能にする新しいパラダイムである連続的アンラーニングを導入する。
本稿では,望ましくない概念の生成を選択的に解き放つような一般化エロージョン(DUGE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-17T23:17:16Z) - Modular Customization of Diffusion Models via Blockwise-Parameterized Low-Rank Adaptation [73.16975077770765]
コンセプトのスタイリングやマルチコンセプトのカスタマイズといったアプリケーションには、モジュール化が不可欠である。
インスタントマージ法は、個々のマージされた概念のアイデンティティ損失と干渉を引き起こすことが多い。
個々の概念のアイデンティティを正確に保存しつつ,複数の概念を効率的に組み合わせたインスタントマージ手法であるBlockLoRAを提案する。
論文 参考訳(メタデータ) (2025-03-11T16:10:36Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
テキスト・ツー・イメージ(T2I)拡散モデルは、テキスト・プロンプトと密接に対応した画像を生成する際、例外的な機能を示す。
モデルは、暴力やヌードの画像を生成したり、不適切な文脈で公共の人物の無許可の肖像画を作成するなど、悪意ある目的のために利用することができる。
悪質な概念や望ましくない概念の発生を防ぐために拡散モデルを変更する概念除去法が提案されている。
論文 参考訳(メタデータ) (2024-06-21T03:58:44Z) - Unlearning Concepts in Diffusion Model via Concept Domain Correction and Concept Preserving Gradient [20.698305103879232]
我々はtextbfDoCo (textbfDomaintextbfCorrection) という新しい概念領域補正フレームワークを提案する。
本手法は, 対象概念の包括的未学習を保証し, 先進的学習を通して, センシティブな概念とアンカーの概念の出力領域を整合させることにより, 対象概念の包括的未学習を確実にする。
また、矛盾する勾配成分を緩和し、特定の概念を学習しながらモデルの実用性を維持するための概念保存的勾配手術手法も導入する。
論文 参考訳(メタデータ) (2024-05-24T07:47:36Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
大規模拡散モデルから安全でない概念を排除するために,分離可能なマルチコンセプト消去器(SepME)を提案する。
後者は最適化可能なモデルウェイトを分離し、各ウェイトインクリメントは特定の概念の消去に対応する。
広範囲にわたる実験は, 概念の排除, モデル性能の保存, 各種概念の消去・回復における柔軟性の確保に, アプローチの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-03T11:10:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。