論文の概要: Towards Robust Evaluation of STEM Education: Leveraging MLLMs in Project-Based Learning
- arxiv url: http://arxiv.org/abs/2505.17050v1
- Date: Fri, 16 May 2025 11:01:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.498558
- Title: Towards Robust Evaluation of STEM Education: Leveraging MLLMs in Project-Based Learning
- Title(参考訳): STEM教育のロバストな評価に向けて--プロジェクトベースラーニングにおけるMLLMの活用
- Authors: Yanhao Jia, Xinyi Wu, Qinglin Zhang, Yiran Qin, Luwei Xiao, Shuai Zhao,
- Abstract要約: プロジェクトベースラーニング(PBL)は、様々な高度に相関したマルチモーダルデータを含んでおり、STEM分野において重要な教育的アプローチとなっている。
MLLM(Multimodal large language model)の急速な発展に伴い、研究者は情報検索、知識理解、データ生成といったタスクを強化する可能性を探り始めた。
既存のベンチマークは、自由形式の出力構造と厳格な人間の専門家による検証プロセスの両方を提供することで不足しており、実際の教育タスクを評価する上での有効性を制限している。
- 参考スコア(独自算出の注目度): 19.4760649326684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Project-Based Learning (PBL) involves a variety of highly correlated multimodal data, making it a vital educational approach within STEM disciplines. With the rapid development of multimodal large language models (MLLMs), researchers have begun exploring their potential to enhance tasks such as information retrieval, knowledge comprehension, and data generation in educational settings. However, existing benchmarks fall short in providing both a free-form output structure and a rigorous human expert validation process, limiting their effectiveness in evaluating real-world educational tasks. Additionally, few methods have developed automated pipelines to assist with the complex responsibilities of teachers leveraging MLLMs, largely due to model hallucination and instability, which lead to unreliable implementation. To address this gap, we introduce PBLBench, a novel benchmark designed to evaluate complex reasoning grounded in domain-specific knowledge and long-context understanding, thereby challenging models with tasks that closely resemble those handled by human experts. To establish reliable ground truth, we adopt the Analytic Hierarchy Process (AHP), utilizing expert-driven pairwise comparisons to derive structured and weighted evaluation criteria. We assess the performance of 15 leading MLLMs/LLMs using PBLBench and demonstrate that even the most advanced models achieve only 59% rank accuracy, underscoring the significant challenges presented by this benchmark. We believe PBLBench will serve as a catalyst for the development of more capable AI agents, ultimately aiming to alleviate teacher workload and enhance educational productivity.
- Abstract(参考訳): プロジェクトベースラーニング(PBL)は、様々な高度に相関したマルチモーダルデータを含んでおり、STEM分野において重要な教育的アプローチとなっている。
MLLM(Multimodal large language model)の急速な発展に伴い、研究者は情報検索、知識理解、データ生成などのタスクを強化する可能性を探り始めた。
しかし、既存のベンチマークでは、自由形式の出力構造と厳密な人間の専門家による検証プロセスの両方を提供し、実際の教育タスクを評価する上での有効性を制限している。
加えて、MLLMを利用する教師の複雑な責務を支援するための自動パイプラインを開発する方法はほとんどなく、主にモデル幻覚と不安定のため、信頼性の低い実装に繋がる。
このギャップに対処するために、ドメイン固有の知識と長いコンテキスト理解に基づく複雑な推論を評価するために設計された新しいベンチマークであるPBLBenchを導入する。
そこで我々は,AHP(Analytic Hierarchy Process)を採用し,専門家主導のペアワイド比較を用いて,構造化および重み付き評価基準を導出する。
PBLBenchを用いて15個のMLLM/LLMの性能評価を行い、最も高度なモデルでも59%の精度しか達成できないことを示した。
私たちは、PBLBenchがより有能なAIエージェントの開発の触媒となると信じています。
関連論文リスト
- MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
大規模言語モデル(MoRE-LLM)によるルールエキスパートの混合を提案する。
MoRE-LLMは、トレーニング中の局所的なルールベースのサロゲートの発見と、それらの分類タスクの利用を操縦する。
LLMはルールを修正・コンテキスト化することで、ルールのドメイン知識の整合性を高める役割を担います。
論文 参考訳(メタデータ) (2025-03-26T11:09:21Z) - A Novel Psychometrics-Based Approach to Developing Professional Competency Benchmark for Large Language Models [0.0]
本稿では,厳密な心理測定原理に基づくベンチマーク開発への包括的アプローチを提案する。
我々は、教育と教育の分野で新しいベンチマークを作成することで、このアプローチを説明する最初の試みを行う。
我々はブルームの分類学によってガイドされ、テスト開発で訓練された教育専門家のコンソーシアムによって厳格に設計された新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-29T19:32:43Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
インストラクションチューニングは、大きな言語モデルにオープンドメイン命令と人間優先応答を合わせることを目的としている。
学生のLLMの追従が難しい命令を選択するために,TAPIR(Task-Aware Curriculum Planning for Instruction Refinement)を導入する。
学生の能力のバランスをとるために、トレーニングセット内のタスク分布は、対応するタスクに応じて自動的に調整された応答で調整される。
論文 参考訳(メタデータ) (2024-05-22T08:38:26Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
本研究では,Large Language Models (LLMs) のエッセイ自動評価における有効性について検討した。
本稿では,デュアルプロセス理論にインスパイアされたオープンソースのLLMベースのAESシステムを提案する。
本システムでは, 学習過程の自動化だけでなく, 成績や効率の向上も図っている。
論文 参考訳(メタデータ) (2024-01-12T07:50:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。