Medalyze: Lightweight Medical Report Summarization Application Using FLAN-T5-Large
- URL: http://arxiv.org/abs/2505.17059v1
- Date: Sat, 17 May 2025 07:16:58 GMT
- Title: Medalyze: Lightweight Medical Report Summarization Application Using FLAN-T5-Large
- Authors: Van-Tinh Nguyen, Hoang-Duong Pham, Thanh-Hai To, Cong-Tuan Hung Do, Thi-Thu-Trang Dong, Vu-Trung Duong Le, Van-Phuc Hoang,
- Abstract summary: Medalyze is an AI-powered application designed to enhance the comprehension of medical texts.<n>It is deployed across a web and mobile platform with real-time inference, leveraging scalable API and YugabyteDB.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding medical texts presents significant challenges due to complex terminology and context-specific language. This paper introduces Medalyze, an AI-powered application designed to enhance the comprehension of medical texts using three specialized FLAN-T5-Large models. These models are fine-tuned for (1) summarizing medical reports, (2) extracting health issues from patient-doctor conversations, and (3) identifying the key question in a passage. Medalyze is deployed across a web and mobile platform with real-time inference, leveraging scalable API and YugabyteDB. Experimental evaluations demonstrate the system's superior summarization performance over GPT-4 in domain-specific tasks, based on metrics like BLEU, ROUGE-L, BERTScore, and SpaCy Similarity. Medalyze provides a practical, privacy-preserving, and lightweight solution for improving information accessibility in healthcare.
Related papers
- MedGemma Technical Report [75.88152277443179]
We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B.<n>MedGemma demonstrates advanced medical understanding and reasoning on images and text.<n>We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP.
arXiv Detail & Related papers (2025-07-07T17:01:44Z) - Enhancing Medical Dialogue Generation through Knowledge Refinement and Dynamic Prompt Adjustment [43.01880734118588]
Medical dialogue systems (MDS) have emerged as crucial online platforms for enabling multi-turn, context-aware conversations with patients.<n>We propose MedRef, a novel MDS that incorporates knowledge refining and dynamic prompt adjustment.<n>We show that MedRef outperforms state-of-the-art baselines in both generation quality and medical entity accuracy.
arXiv Detail & Related papers (2025-06-12T16:44:25Z) - Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - FaMeSumm: Investigating and Improving Faithfulness of Medical
Summarization [20.7585913214759]
Current summarization models often produce unfaithful outputs for medical input text.
FaMeSumm is a framework to improve faithfulness by fine-tuning pre-trained language models based on medical knowledge.
arXiv Detail & Related papers (2023-11-03T23:25:53Z) - Generating medically-accurate summaries of patient-provider dialogue: A
multi-stage approach using large language models [6.252236971703546]
An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue.
This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks.
arXiv Detail & Related papers (2023-05-10T08:48:53Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Summarizing Patients Problems from Hospital Progress Notes Using
Pre-trained Sequence-to-Sequence Models [9.879960506853145]
Problem list summarization requires a model to understand, abstract, and generate clinical documentation.
We propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization.
arXiv Detail & Related papers (2022-08-17T17:07:35Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Word-level Text Highlighting of Medical Texts forTelehealth Services [0.0]
This paper aims to show how different text highlighting techniques can capture relevant medical context.
Three different word-level text highlighting methodologies are implemented and evaluated.
The results of our experiments show that the neural network approach is successful in highlighting medically-relevant terms.
arXiv Detail & Related papers (2021-05-21T15:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.