Decoding Rarity: Large Language Models in the Diagnosis of Rare Diseases
- URL: http://arxiv.org/abs/2505.17065v1
- Date: Sun, 18 May 2025 15:42:15 GMT
- Title: Decoding Rarity: Large Language Models in the Diagnosis of Rare Diseases
- Authors: Valentina Carbonari, Pierangelo Veltri, Pietro Hiram Guzzi,
- Abstract summary: Large language models (LLMs) have shown promising capabilities in transforming rare disease research.<n>This paper explores the integration of LLMs in the analysis of rare diseases, highlighting significant strides and pivotal studies.
- Score: 1.9662978733004604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in artificial intelligence, particularly large language models LLMs, have shown promising capabilities in transforming rare disease research. This survey paper explores the integration of LLMs in the analysis of rare diseases, highlighting significant strides and pivotal studies that leverage textual data to uncover insights and patterns critical for diagnosis, treatment, and patient care. While current research predominantly employs textual data, the potential for multimodal data integration combining genetic, imaging, and electronic health records stands as a promising frontier. We review foundational papers that demonstrate the application of LLMs in identifying and extracting relevant medical information, simulating intelligent conversational agents for patient interaction, and enabling the formulation of accurate and timely diagnoses. Furthermore, this paper discusses the challenges and ethical considerations inherent in deploying LLMs, including data privacy, model transparency, and the need for robust, inclusive data sets. As part of this exploration, we present a section on experimentation that utilizes multiple LLMs alongside structured questionnaires, specifically designed for diagnostic purposes in the context of different diseases. We conclude with future perspectives on the evolution of LLMs towards truly multimodal platforms, which would integrate diverse data types to provide a more comprehensive understanding of rare diseases, ultimately fostering better outcomes in clinical settings.
Related papers
- MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
We propose a novel Historical-Constrained Large Language Models (HC-LLM) framework for Radiology report generation.<n>Our approach extracts both time-shared and time-specific features from longitudinal chest X-rays and diagnostic reports to capture disease progression.<n> Notably, our approach performs well even without historical data during testing and can be easily adapted to other multimodal large models.
arXiv Detail & Related papers (2024-12-15T06:04:16Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - Large Language Model Benchmarks in Medical Tasks [14.739357670600103]
This paper presents a survey of various benchmark datasets employed in medical large language models (LLMs) tasks.<n>The survey categorizes the datasets by modality, discussing their significance, data structure, and impact on the development of LLMs.<n>The paper emphasizes the need for datasets with a greater degree of language diversity, structured omics data, and innovative approaches to synthesis.
arXiv Detail & Related papers (2024-10-28T11:07:33Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [14.739357670600103]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.<n>We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - A Survey for Large Language Models in Biomedicine [31.719451674137844]
This review is based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv.
We explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine.
We discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics.
arXiv Detail & Related papers (2024-08-29T12:39:16Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis [6.30440420617113]
We introduce MedTsLLM, a general multimodal large language model (LLM) framework that integrates time series data and rich contextual information in the form of text to analyze physiological signals.
We perform three tasks with clinical relevance: semantic segmentation, boundary detection, and anomaly detection in time series.
Our model outperforms state-of-the-art baselines, including deep learning models, other LLMs, and clinical methods across multiple medical domains.
arXiv Detail & Related papers (2024-08-14T18:57:05Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Don't Ignore Dual Logic Ability of LLMs while Privatizing: A
Data-Intensive Analysis in Medical Domain [19.46334739319516]
We study how the dual logic ability of LLMs is affected during the privatization process in the medical domain.
Our results indicate that incorporating general domain dual logic data into LLMs not only enhances LLMs' dual logic ability but also improves their accuracy.
arXiv Detail & Related papers (2023-09-08T08:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.