論文の概要: Predictively Combatting Toxicity in Health-related Online Discussions through Machine Learning
- arxiv url: http://arxiv.org/abs/2505.17068v1
- Date: Mon, 19 May 2025 11:53:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.520892
- Title: Predictively Combatting Toxicity in Health-related Online Discussions through Machine Learning
- Title(参考訳): 機械学習による健康関連オンライン討論における毒性の予測的議論
- Authors: Jorge Paz-Ruza, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas, Carlos Eiras-Franco,
- Abstract要約: そこで本研究では,健康関連オンラインディスカッションにおいて,ユーザが有害に対話できる場所を予測的に予測する代替案を提案する。
コラボレーションフィルタリングベースの機械学習手法を適用することで、あらゆるユーザとRedditのサブコミュニティ間の新型コロナウイルス関連の会話の毒性を予測し、関連するメトリクスで80%以上の予測パフォーマンスを達成します。
- 参考スコア(独自算出の注目度): 2.9748898344267785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In health-related topics, user toxicity in online discussions frequently becomes a source of social conflict or promotion of dangerous, unscientific behaviour; common approaches for battling it include different forms of detection, flagging and/or removal of existing toxic comments, which is often counterproductive for platforms and users alike. In this work, we propose the alternative of combatting user toxicity predictively, anticipating where a user could interact toxically in health-related online discussions. Applying a Collaborative Filtering-based Machine Learning methodology, we predict the toxicity in COVID-related conversations between any user and subcommunity of Reddit, surpassing 80% predictive performance in relevant metrics, and allowing us to prevent the pairing of conflicting users and subcommunities.
- Abstract(参考訳): 健康関連トピックでは、オンライン議論におけるユーザ毒性は、しばしば社会的衝突や危険な非科学的行動の促進の源となる。
そこで本研究では,健康に関するオンライン議論において,利用者が有害に対話できる場所を予測的に予測する代替案を提案する。
コラボレーションフィルタリングベースの機械学習手法を適用することで、Redditのユーザとサブコミュニティ間の新型コロナウイルス関連の会話の毒性を予測し、関連するメトリクスで80%以上の予測パフォーマンスを達成し、競合するユーザとサブコミュニティのペアリングを防止することができます。
関連論文リスト
- Comprehensive Assessment of Toxicity in ChatGPT [49.71090497696024]
本研究は,ChatGPTの毒性を指導調整データセットを用いて評価する。
創作作業のプロンプトは 有害な反応を 引き起こす確率が 2倍になる
初期の研究で設計された、故意に有害なプロンプトは、もはや有害な反応を生じさせない。
論文 参考訳(メタデータ) (2023-11-03T14:37:53Z) - ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in
Real-World User-AI Conversation [43.356758428820626]
ToxicChatは、オープンソースのチャットボットからの実際のユーザクエリに基づく、新しいベンチマークである。
既存の毒性データセットに基づいてトレーニングされたモデルの体系的評価は、ToxicChatのこのユニークなドメインに適用した場合の欠点を示している。
将来的には、ToxicChatは、ユーザとAIインタラクションのための安全で健全な環境を構築するためのさらなる進歩を促進する上で、貴重なリソースになり得る。
論文 参考訳(メタデータ) (2023-10-26T13:35:41Z) - Twitter Users' Behavioral Response to Toxic Replies [1.2387676601792899]
我々は,Twitter上でのユーザのオンライン行動に及ぼす毒性の影響を検討した。
毒性の犠牲者は, 回避, 復讐, 対策, 交渉といった行動反応の組合せがみられた。
本研究は, ソーシャルメディア上での毒性の負の結果を低減するための, より効果的な検出・介入手法の開発において, さらなる研究を支援することができる。
論文 参考訳(メタデータ) (2022-10-24T17:36:58Z) - Handling Bias in Toxic Speech Detection: A Survey [26.176340438312376]
本稿では,有毒な音声検出におけるバイアスの評価と緩和手法について検討する。
ケーススタディでは、知識に基づくバイアス緩和によるバイアスシフトの概念を紹介している。
調査は、重要な課題、研究のギャップ、今後の方向性の概要で締めくくっている。
論文 参考訳(メタデータ) (2022-01-26T10:38:36Z) - Toxicity Detection can be Sensitive to the Conversational Context [64.28043776806213]
2種類の毒性ラベルを持つ1万のポストのデータセットを構築し、公開します。
また,新たな課題である文脈感度推定を導入し,コンテキストも考慮された場合,毒性が変化すると認識された投稿を識別することを目的とした。
論文 参考訳(メタデータ) (2021-11-19T13:57:26Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
性別、人種、方言などの属性に対するバイアスは、毒性検出のためのほとんどのトレーニングデータセットに存在する。
本稿では,論理生成器と予測器から構成されるゲーム理論フレームワークである不変合理化(InvRat)を用いて,特定の構文パターンの素早い相関を除外することを提案する。
本手法は, 語彙属性と方言属性の両方において, 従来のデバイアス法よりも低い偽陽性率を示す。
論文 参考訳(メタデータ) (2021-06-14T08:49:52Z) - RECAST: Enabling User Recourse and Interpretability of Toxicity
Detection Models with Interactive Visualization [16.35961310670002]
本稿では,有害モデルの予測を可視化するインタラクティブなオープンソースWebツールであるRECASTについて紹介する。
その結果,RECASTはモデルにより検出された毒性の低減に有効であることが判明した。
このことは、毒性検出モデルがどのように機能し、機能するか、そしてそれらがオンライン談話の将来に与える影響について、議論を開いている。
論文 参考訳(メタデータ) (2021-02-08T18:37:50Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
事前訓練されたニューラルネットワークモデル(LM)は、安全なデプロイメントを妨げる人種差別的、性差別的、その他の有害な言語を生成する傾向にある。
本研究では, 予め訓練したLMが有害な言語を生成できる範囲と, 有害な変性を防止するための制御可能なテキスト生成アルゴリズムの有効性について検討する。
論文 参考訳(メタデータ) (2020-09-24T03:17:19Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。