Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector
- URL: http://arxiv.org/abs/2505.17100v1
- Date: Wed, 21 May 2025 07:23:05 GMT
- Title: Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector
- Authors: Haoyan Yang, Runxue Bao, Cao Xiao, Jun Ma, Parminder Bhatia, Shangqian Gao, Taha Kass-Hout,
- Abstract summary: Reasoning-based Bias Detector identifies biased evaluations and generates structured reasoning to guide evaluator self-correction.<n>We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales.<n>For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively.
- Score: 39.31014594205513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.
Related papers
- Meta-Fair: AI-Assisted Fairness Testing of Large Language Models [2.9632404823837777]
Fairness is a core principle in the development of Artificial Intelligence (AI) systems.<n>Current approaches to fairness testing in large language models (LLMs) often rely on manual evaluation, fixed templates, deterministics, and curated datasets.<n>This work aims to lay the groundwork for a novel, automated method for testing fairness in LLMs.
arXiv Detail & Related papers (2025-07-03T11:20:59Z) - Evaluating Scoring Bias in LLM-as-a-Judge [8.751901240110888]
Large Language Models (LLMs) are employed as evaluators for complex tasks.<n>There are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments.
arXiv Detail & Related papers (2025-06-27T15:25:23Z) - Pairwise or Pointwise? Evaluating Feedback Protocols for Bias in LLM-Based Evaluation [57.380464382910375]
We show that the choice of feedback protocol can significantly affect evaluation reliability and induce systematic biases.<n>In particular, we show that pairwise evaluation protocols are more vulnerable to distracted evaluation.
arXiv Detail & Related papers (2025-04-20T19:05:59Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.<n>Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.<n>We propose Reasoning-Driven Process Reward Modeling (R-PRM)<n>R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.<n>This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.<n>We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.<n>To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - Language Model Preference Evaluation with Multiple Weak Evaluators [78.53743237977677]
GED (Preference Graph Ensemble and Denoise) is a novel approach that leverages multiple model-based evaluators to construct preference graphs.<n>In particular, our method consists of two primary stages: aggregating evaluations into a unified graph and applying a denoising process.<n>We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure.
arXiv Detail & Related papers (2024-10-14T01:57:25Z) - Direct Judgement Preference Optimization [66.83088028268318]
We train large language models (LLMs) as generative judges to evaluate and critique other models' outputs.
We employ three approaches to collect the preference pairs for different use cases, each aimed at improving our generative judge from a different perspective.
Our model robustly counters inherent biases such as position and length bias, flexibly adapts to any evaluation protocol specified by practitioners, and provides helpful language feedback for improving downstream generator models.
arXiv Detail & Related papers (2024-09-23T02:08:20Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.