Multi-Modality Expansion and Retention for LLMs through Parameter Merging and Decoupling
- URL: http://arxiv.org/abs/2505.17110v1
- Date: Wed, 21 May 2025 12:40:07 GMT
- Title: Multi-Modality Expansion and Retention for LLMs through Parameter Merging and Decoupling
- Authors: Junlin Li, Guodong DU, Jing Li, Sim Kuan Goh, Wenya Wang, Yequan Wang, Fangming Liu, Ho-Kin Tang, Saleh Alharbi, Daojing He, Min Zhang,
- Abstract summary: MMER integrates existing MLLMs for effective multimodal expansion while retaining their original performance.<n>MMER can also mitigate catastrophic forgetting by applying a similar process to MLLMs fine-tuned on new tasks.
- Score: 33.90190836855285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning Large Language Models (LLMs) with multimodal encoders on modality-specific data expands the modalities that LLMs can handle, leading to the formation of Multimodal LLMs (MLLMs). However, this paradigm heavily relies on resource-intensive and inflexible fine-tuning from scratch with new multimodal data. In this paper, we propose MMER (Multi-modality Expansion and Retention), a training-free approach that integrates existing MLLMs for effective multimodal expansion while retaining their original performance. Specifically, MMER reuses MLLMs' multimodal encoders while merging their LLM parameters. By comparing original and merged LLM parameters, MMER generates binary masks to approximately separate LLM parameters for each modality. These decoupled parameters can independently process modality-specific inputs, reducing parameter conflicts and preserving original MLLMs' fidelity. MMER can also mitigate catastrophic forgetting by applying a similar process to MLLMs fine-tuned on new tasks. Extensive experiments show significant improvements over baselines, proving that MMER effectively expands LLMs' multimodal capabilities while retaining 99% of the original performance, and also markedly mitigates catastrophic forgetting.
Related papers
- Distilling Transitional Pattern to Large Language Models for Multimodal Session-based Recommendation [67.84581846180458]
Session-based recommendation (SBR) predicts the next item based on anonymous sessions.<n>Recent Multimodal SBR methods utilize simplistic pre-trained models for modality learning but have limitations in semantic richness.<n>We propose a multimodal LLM-enhanced framework TPAD, which extends a distillation paradigm to decouple and align transitional patterns for promoting MSBR.
arXiv Detail & Related papers (2025-04-13T07:49:08Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation [21.281471662696372]
We propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model.<n>To capture the dynamic user preference, we design a two-stage user preference summarization method.<n>We then employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences.
arXiv Detail & Related papers (2024-08-19T04:44:32Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
We make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs.
We introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope.
We merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales.
arXiv Detail & Related papers (2024-08-06T10:46:46Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs [3.450141240227484]
We propose a lightweight method for any-precision quantization of Large Language Models (LLMs)
Our solution significantly reduces the high costs of deploying multiple, different-sized LLMs.
All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput.
arXiv Detail & Related papers (2024-02-16T09:06:06Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.