ReasoningShield: Content Safety Detection over Reasoning Traces of Large Reasoning Models
- URL: http://arxiv.org/abs/2505.17244v1
- Date: Thu, 22 May 2025 19:44:41 GMT
- Title: ReasoningShield: Content Safety Detection over Reasoning Traces of Large Reasoning Models
- Authors: Changyi Li, Jiayi Wang, Xudong Pan, Geng Hong, Min Yang,
- Abstract summary: Reasoning Models (LRMs) are transforming the AI landscape with advanced reasoning capabilities.<n>While the generated reasoning traces enhance model transparency, they can still contain unsafe content, even when the final answer appears safe.<n>Existing moderation tools, primarily designed for question-answer (QA) pairs, are empirically ineffective at detecting hidden risks embedded in reasoning traces.<n>We propose ReasoningShield, the first safety detection model tailored to identify potential risks in the reasoning trace before reaching the final answer.
- Score: 19.963759799471568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Reasoning Models (LRMs) are transforming the AI landscape with advanced reasoning capabilities. While the generated reasoning traces enhance model transparency, they can still contain unsafe content, even when the final answer appears safe. Existing moderation tools, primarily designed for question-answer (QA) pairs, are empirically ineffective at detecting hidden risks embedded in reasoning traces. After identifying the key challenges, we formally define the question-thought (QT) moderation task and propose ReasoningShield, the first safety detection model tailored to identify potential risks in the reasoning trace before reaching the final answer. To construct the model, we synthesize a high-quality reasoning safety detection dataset comprising over 8,000 question-thought pairs spanning ten risk categories and three safety levels. Our dataset construction process incorporates a comprehensive human-AI collaborative annotation pipeline, which achieves over 93% annotation accuracy while significantly reducing human costs. On a diverse set of in-distribution and out-of-distribution benchmarks, ReasoningShield outperforms mainstream content safety moderation models in identifying risks within reasoning traces, with an average F1 score exceeding 0.92. Notably, despite being trained on our QT dataset only, ReasoningShield also demonstrates competitive performance in detecting unsafe question-answer pairs on traditional benchmarks, rivaling baselines trained on 10 times larger datasets and base models, which strongly validates the quality of our dataset. Furthermore, ReasoningShield is built upon compact 1B/3B base models to facilitate lightweight deployment and provides human-friendly risk analysis by default. To foster future research, we publicly release all the resources.
Related papers
- Beyond Safe Answers: A Benchmark for Evaluating True Risk Awareness in Large Reasoning Models [29.569220030102986]
We introduce textbfBeyond Safe Answers (BSA) bench, a novel benchmark comprising 2,000 challenging instances organized into three distinct SSA scenario types.<n> Evaluations of 19 state-of-the-art LRMs demonstrate the difficulty of this benchmark, with top-performing models achieving only 38.0% accuracy in correctly identifying risk rationales.<n>Our work provides a comprehensive assessment tool for evaluating and improving safety reasoning fidelity in LRMs, advancing the development of genuinely risk-aware and reliably safe AI systems.
arXiv Detail & Related papers (2025-05-26T08:49:19Z) - Advancing Neural Network Verification through Hierarchical Safety Abstract Interpretation [52.626086874715284]
We introduce a novel problem formulation called Abstract DNN-Verification, which verifies a hierarchical structure of unsafe outputs.<n>By leveraging abstract interpretation and reasoning about output reachable sets, our approach enables assessing multiple safety levels during the formal verification process.<n>Our contributions include a theoretical exploration of the relationship between our novel abstract safety formulation and existing approaches.
arXiv Detail & Related papers (2025-05-08T13:29:46Z) - The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1 [70.94607997570729]
We present a comprehensive safety assessment of OpenAI-o3 and DeepSeek-R1 reasoning models.<n>We investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications.
arXiv Detail & Related papers (2025-02-18T09:06:07Z) - OpenAI o1 System Card [274.83891368890977]
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought.<n>This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
arXiv Detail & Related papers (2024-12-21T18:04:31Z) - Safe to Serve: Aligning Instruction-Tuned Models for Safety and Helpfulness [0.0]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning and text generation.<n>LLMs can inadvertently generate unsafe or biased responses when prompted with problematic inputs.<n>This research addresses the critical challenge of developing language models that generate both helpful and harmless content.
arXiv Detail & Related papers (2024-11-26T06:52:22Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - A Survey on Uncertainty Toolkits for Deep Learning [3.113304966059062]
We present the first survey on toolkits for uncertainty estimation in deep learning (DL)
We investigate 11 toolkits with respect to modeling and evaluation capabilities.
While the first two provide a large degree of flexibility and seamless integration into their respective framework, the last one has the larger methodological scope.
arXiv Detail & Related papers (2022-05-02T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.