The Rise of Parameter Specialization for Knowledge Storage in Large Language Models
- URL: http://arxiv.org/abs/2505.17260v1
- Date: Thu, 22 May 2025 20:15:01 GMT
- Title: The Rise of Parameter Specialization for Knowledge Storage in Large Language Models
- Authors: Yihuai Hong, Yiran Zhao, Wei Tang, Yang Deng, Yu Rong, Wenxuan Zhang,
- Abstract summary: We show that as language models become more advanced, their parameters exhibit increased specialization.<n>We experimentally validate that this specialized distribution of knowledge contributes to improving the efficiency of knowledge utilization in these models.
- Score: 50.91855620712756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over time, a growing wave of large language models from various series has been introduced to the community. Researchers are striving to maximize the performance of language models with constrained parameter sizes. However, from a microscopic perspective, there has been limited research on how to better store knowledge in model parameters, particularly within MLPs, to enable more effective utilization of this knowledge by the model. In this work, we analyze twenty publicly available open-source large language models to investigate the relationship between their strong performance and the way knowledge is stored in their corresponding MLP parameters. Our findings reveal that as language models become more advanced and demonstrate stronger knowledge capabilities, their parameters exhibit increased specialization. Specifically, parameters in the MLPs tend to be more focused on encoding similar types of knowledge. We experimentally validate that this specialized distribution of knowledge contributes to improving the efficiency of knowledge utilization in these models. Furthermore, by conducting causal training experiments, we confirm that this specialized knowledge distribution plays a critical role in improving the model's efficiency in leveraging stored knowledge.
Related papers
- When Context Leads but Parametric Memory Follows in Large Language Models [4.567122178196834]
Large language models (LLMs) have demonstrated remarkable progress in leveraging diverse knowledge sources.
This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions.
arXiv Detail & Related papers (2024-09-13T00:03:19Z) - Does Knowledge Localization Hold True? Surprising Differences Between Entity and Relation Perspectives in Language Models [20.157061521694096]
This study investigates the differences between entity and relational knowledge through knowledge editing.
To further elucidate the differences between entity and relational knowledge, we employ causal analysis to investigate how relational knowledge is stored in pre-trained models.
This insight highlights the multifaceted nature of knowledge storage in language models, underscoring the complexity of manipulating specific types of knowledge within these models.
arXiv Detail & Related papers (2024-09-01T05:09:11Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.<n>We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.<n>The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Seeking Neural Nuggets: Knowledge Transfer in Large Language Models from a Parametric Perspective [106.92016199403042]
We empirically investigate knowledge transfer from larger to smaller models through a parametric perspective.
We employ sensitivity-based techniques to extract and align knowledge-specific parameters between different large language models.
Our findings highlight the critical factors contributing to the process of parametric knowledge transfer.
arXiv Detail & Related papers (2023-10-17T17:58:34Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
We introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model.
It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model.
It then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction.
arXiv Detail & Related papers (2023-06-04T15:44:51Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements.
We present LM-CORE -- a general framework to achieve this -- that allows textitdecoupling of the language model training from the external knowledge source.
Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks.
arXiv Detail & Related papers (2022-08-12T18:59:37Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) are pre-trained models with relation triples injecting from knowledge graphs to improve language understanding abilities.
Previous studies integrate models with knowledge encoders for representing knowledge retrieved from knowledge graphs.
We propose a novel KEPLM named DKPLM that Decomposes Knowledge injection process of the Pre-trained Language Models in pre-training, fine-tuning and inference stages.
arXiv Detail & Related papers (2021-12-02T08:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.