Model-Free Graph Data Selection under Distribution Shift
- URL: http://arxiv.org/abs/2505.17293v1
- Date: Thu, 22 May 2025 21:18:39 GMT
- Title: Model-Free Graph Data Selection under Distribution Shift
- Authors: Ting-Wei Li, Ruizhong Qiu, Hanghang Tong,
- Abstract summary: Graph domain adaptation (GDA) is a fundamental task in graph machine learning.<n>We propose a novel model-free framework, GRADATE, that selects the best training data from the source domain for the classification task on the target domain.<n>We show GRADATE outperforms existing selection methods and enhances off-the-shelf GDA methods with much fewer training data.
- Score: 44.30841582710448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph domain adaptation (GDA) is a fundamental task in graph machine learning, with techniques like shift-robust graph neural networks (GNNs) and specialized training procedures to tackle the distribution shift problem. Although these model-centric approaches show promising results, they often struggle with severe shifts and constrained computational resources. To address these challenges, we propose a novel model-free framework, GRADATE (GRAph DATa sElector), that selects the best training data from the source domain for the classification task on the target domain. GRADATE picks training samples without relying on any GNN model's predictions or training recipes, leveraging optimal transport theory to capture and adapt to distribution changes. GRADATE is data-efficient, scalable and meanwhile complements existing model-centric GDA approaches. Through comprehensive empirical studies on several real-world graph-level datasets and multiple covariate shift types, we demonstrate that GRADATE outperforms existing selection methods and enhances off-the-shelf GDA methods with much fewer training data.
Related papers
- A Scalable Pretraining Framework for Link Prediction with Efficient Adaptation [16.82426251068573]
Link Prediction (LP) is a critical task in graph machine learning.<n>Existing methods face key challenges including limited supervision from sparse connectivity.<n>We explore pretraining as a solution to address these challenges.
arXiv Detail & Related papers (2025-08-06T17:10:31Z) - A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.<n>Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.<n>To provide a better understanding of the literature, we introduce a systematic taxonomy that classifies existing methods into model-centric and data-centric approaches.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - GraphLoRA: Structure-Aware Contrastive Low-Rank Adaptation for Cross-Graph Transfer Learning [17.85404473268992]
Graph Neural Networks (GNNs) have demonstrated remarkable proficiency in handling a range of graph analytical tasks.<n>Despite their versatility, GNNs face significant challenges in transferability, limiting their utility in real-world applications.<n>We propose GraphLoRA, an effective and parameter-efficient method for transferring well-trained GNNs to diverse graph domains.
arXiv Detail & Related papers (2024-09-25T06:57:42Z) - Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation [31.106636947179005]
Unsupervised Graph Domain Adaptation involves the transfer of knowledge from a label-rich source graph to an unlabeled target graph.
We present the first comprehensive benchmark for unsupervised graph domain adaptation named GDABench.
We observe that the performance of current UGDA models varies significantly across different datasets and adaptation scenarios.
arXiv Detail & Related papers (2024-07-09T06:44:09Z) - Multi-source Unsupervised Domain Adaptation on Graphs with Transferability Modeling [35.39202826643388]
We present the framework Selective Multi-source Adaptation for Graph (method), with a graph-modeling-based domain selector, a sub-graph node selector, and a bi-level alignment objective.
Results on five graph datasets show the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-14T22:05:21Z) - GOODAT: Towards Test-time Graph Out-of-Distribution Detection [103.40396427724667]
Graph neural networks (GNNs) have found widespread application in modeling graph data across diverse domains.
Recent studies have explored graph OOD detection, often focusing on training a specific model or modifying the data on top of a well-trained GNN.
This paper introduces a data-centric, unsupervised, and plug-and-play solution that operates independently of training data and modifications of GNN architecture.
arXiv Detail & Related papers (2024-01-10T08:37:39Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - Deep Graph Reprogramming [112.34663053130073]
"Deep graph reprogramming" is a model reusing task tailored for graph neural networks (GNNs)
We propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.
arXiv Detail & Related papers (2023-04-28T02:04:29Z) - An Adaptive Graph Pre-training Framework for Localized Collaborative
Filtering [79.17319280791237]
We propose an adaptive graph pre-training framework for localized collaborative filtering (ADAPT)
ADAPT captures both the common knowledge across different graphs and the uniqueness for each graph.
It does not require transferring user/item embeddings, and is able to capture both the common knowledge across different graphs and the uniqueness for each graph.
arXiv Detail & Related papers (2021-12-14T06:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.