CT-OT Flow: Estimating Continuous-Time Dynamics from Discrete Temporal Snapshots
- URL: http://arxiv.org/abs/2505.17354v1
- Date: Fri, 23 May 2025 00:12:49 GMT
- Title: CT-OT Flow: Estimating Continuous-Time Dynamics from Discrete Temporal Snapshots
- Authors: Keisuke Kawano, Takuro Kutsuna, Naoki Hayashi, Yasushi Esaki, Hidenori Tanaka,
- Abstract summary: We propose Continuous-Time Optimal Transport Flow (CT-OT Flow), which infers high-resolution time labels via partial optimal transport and reconstructs a continuous-time data distribution through a temporal kernel smoothing.<n>CT-OT Flow consistently outperforms state-of-the-art methods on synthetic benchmarks and achieves lower reconstruction errors on real scRNA-seq and typhoon-track datasets.
- Score: 8.656560659184303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world scenarios, such as single-cell RNA sequencing, data are observed only as discrete-time snapshots spanning finite time intervals and subject to noisy timestamps, with no continuous trajectories available. Recovering the underlying continuous-time dynamics from these snapshots with coarse and noisy observation times is a critical and challenging task. We propose Continuous-Time Optimal Transport Flow (CT-OT Flow), which first infers high-resolution time labels via partial optimal transport and then reconstructs a continuous-time data distribution through a temporal kernel smoothing. This reconstruction enables accurate training of dynamics models such as ODEs and SDEs. CT-OT Flow consistently outperforms state-of-the-art methods on synthetic benchmarks and achieves lower reconstruction errors on real scRNA-seq and typhoon-track datasets. Our results highlight the benefits of explicitly modeling temporal discretization and timestamp uncertainty, offering an accurate and general framework for bridging discrete snapshots and continuous-time processes.
Related papers
- Dynamic Modes as Time Representation for Spatiotemporal Forecasting [19.551966701918236]
The proposed approach employs Dynamic Modecomposition (DMD) to extract temporal modes directly from observed data.<n>Experiments on urban mobility, highway traffic, and climate show that the DMD-based embedding consistently improves long-horizon forecasting accuracy, reduces residual correlation, and enhances temporal generalization.
arXiv Detail & Related papers (2025-06-01T23:16:39Z) - Event Signal Filtering via Probability Flux Estimation [58.31652473933809]
Events offer a novel paradigm for capturing scene dynamics via asynchronous sensing, but their inherent randomness often leads to degraded signal quality.<n>Event signal filtering is thus essential for enhancing fidelity by reducing this internal randomness and ensuring consistent outputs across diverse acquisition conditions.<n>This paper introduces a generative, online filtering framework called Event Density Flow Filter (EDFilter)<n>Experiments validate EDFilter's performance across tasks like event filtering, super-resolution, and direct event-based blob tracking.
arXiv Detail & Related papers (2025-04-10T07:03:08Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
We introduce Dynamical Diffusion (DyDiff), a theoretically sound framework that incorporates temporally aware forward and reverse processes.<n>Experiments across scientifictemporal forecasting, video prediction, and time series forecasting demonstrate that Dynamical Diffusion consistently improves performance in temporal predictive tasks.
arXiv Detail & Related papers (2025-03-02T16:10:32Z) - ODEStream: A Buffer-Free Online Learning Framework with ODE-based Adaptor for Streaming Time Series Forecasting [11.261457967759688]
ODEStream is a buffer-free continual learning framework that incorporates a temporal isolation layer to capture temporal dependencies within the data.<n>It generates a continuous data representation, enabling seamless adaptation to changing dynamics in a data streaming scenario.<n>Our approach focuses on learning how the dynamics and distribution of historical data change over time, facilitating direct processing of streaming sequences.
arXiv Detail & Related papers (2024-11-11T22:36:33Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.<n>We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - TLRN: Temporal Latent Residual Networks For Large Deformation Image Registration [4.272666443603612]
This paper presents a novel approach, termed em Temporal Latent Residual Network (TLRN), to predict a sequence of deformation fields in time-series image registration.
Our proposedN highlights a temporal residual network with residual blocks carefully designed in latent deformation spaces, which are parameterized by time-seial initial velocity fields.
arXiv Detail & Related papers (2024-07-15T20:07:45Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Add and Thin: Diffusion for Temporal Point Processes [24.4686728569167]
ADD-THIN is a principled probabilistic denoising diffusion model for temporal point process (TPP) networks.
It operates on entire event sequences and matches state-of-the-art TPP models in density estimation.
In experiments on synthetic and real-world datasets, our model matches the state-of-the-art TPP models in density estimation and strongly outperforms them in forecasting.
arXiv Detail & Related papers (2023-11-02T10:42:35Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - A Continuous Time Framework for Discrete Denoising Models [43.135447812798155]
We provide the first complete continuous time framework for denoising diffusion models of discrete data.
This is achieved by formulating the forward noising process and corresponding reverse time generative process as Continuous Time Markov Chains (CTMCs)
arXiv Detail & Related papers (2022-05-30T10:37:41Z) - Continuous Latent Process Flows [47.267251969492484]
Partial observations of continuous time-series dynamics at arbitrary time stamps exist in many disciplines. Fitting this type of data using statistical models with continuous dynamics is not only promising at an intuitive level but also has practical benefits.
We tackle these challenges with continuous latent process flows (CLPF), a principled architecture decoding continuous latent processes into continuous observable processes using a time-dependent normalizing flow driven by a differential equation.
Our ablation studies demonstrate the effectiveness of our contributions in various inference tasks on irregular time grids.
arXiv Detail & Related papers (2021-06-29T17:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.