Graph Attention Neural Network for Botnet Detection: Evaluating Autoencoder, VAE and PCA-Based Dimension Reduction
- URL: http://arxiv.org/abs/2505.17357v1
- Date: Fri, 23 May 2025 00:22:14 GMT
- Title: Graph Attention Neural Network for Botnet Detection: Evaluating Autoencoder, VAE and PCA-Based Dimension Reduction
- Authors: Hassan Wasswa, Hussein Abbass, Timothy Lynar,
- Abstract summary: Graph Neural Networks (GNNs) address this limitation by learning an embedding space via iterative message passing.<n>This paper proposes a framework that first reduces dimensionality of the NetFlow-based IoT attack dataset before transforming it into a graph dataset.<n>We evaluate three dimension reduction techniques--Variational Autoencoder (VAE-encoder), classical autoencoder (AE-encoder), and Principal Component Analysis (PCA)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rise of IoT-based botnet attacks, researchers have explored various learning models for detection, including traditional machine learning, deep learning, and hybrid approaches. A key advancement involves deploying attention mechanisms to capture long-term dependencies among features, significantly improving detection accuracy. However, most models treat attack instances independently, overlooking inter-instance relationships. Graph Neural Networks (GNNs) address this limitation by learning an embedding space via iterative message passing where similar instances are placed closer based on node features and relationships, enhancing classification performance. To further improve detection, attention mechanisms have been embedded within GNNs, leveraging both long-range dependencies and inter-instance connections. However, transforming the high dimensional IoT attack datasets into a graph structured dataset poses challenges, such as large graph structures leading computational overhead. To mitigate this, this paper proposes a framework that first reduces dimensionality of the NetFlow-based IoT attack dataset before transforming it into a graph dataset. We evaluate three dimension reduction techniques--Variational Autoencoder (VAE-encoder), classical autoencoder (AE-encoder), and Principal Component Analysis (PCA)--and compare their effects on a Graph Attention neural network (GAT) model for botnet attack detection
Related papers
- Graph Neural Networks Based Anomalous RSSI Detection [0.196629787330046]
This paper presents a novel method for detecting anomalies in wireless links using graph neural networks.<n>The proposed approach involves converting time series data into graphs and training a new graph neural network architecture.
arXiv Detail & Related papers (2025-05-19T09:16:32Z) - Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems [1.1265248232450553]
This paper proposes a self-supervised contrastive learning approach for generalizable intrusion detection on raw packet sequences.<n>Our framework exhibits better performance in comparison to existing NetFlow self-supervised methods.<n>Our model provides a strong baseline for supervised intrusion detection with limited labeled data.
arXiv Detail & Related papers (2025-05-12T13:42:00Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
We introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures.<n>GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies.
arXiv Detail & Related papers (2025-01-30T20:37:47Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
We propose a novel Graph Neural Network (GNN) model to learn flow patterns of attacks structured as graphs.
Our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under adversarial attacks.
arXiv Detail & Related papers (2021-07-30T16:56:39Z) - NF-GNN: Network Flow Graph Neural Networks for Malware Detection and
Classification [11.624780336645006]
Malicious software (malware) poses an increasing threat to the security of communication systems.
We present three variants of our base model, which all support malware detection and classification in supervised and unsupervised settings.
Experiments on four different prediction tasks consistently demonstrate the advantages of our approach and show that our graph neural network model can boost detection performance by a significant margin.
arXiv Detail & Related papers (2021-03-05T20:54:38Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
Botnets are now a major source for many network attacks, such as DDoS attacks and spam.
In this paper, we consider the neural network design challenges of using modern deep learning techniques to learn policies for botnet detection automatically.
arXiv Detail & Related papers (2020-03-13T15:34:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.