Conversations: Love Them, Hate Them, Steer Them
- URL: http://arxiv.org/abs/2505.17413v1
- Date: Fri, 23 May 2025 02:58:45 GMT
- Title: Conversations: Love Them, Hate Them, Steer Them
- Authors: Niranjan Chebrolu, Gerard Christopher Yeo, Kokil Jaidka,
- Abstract summary: Large Language Models (LLMs) demonstrate increasing conversational fluency, yet instilling them with nuanced, human-like emotional expression remains a significant challenge.<n>This paper demonstrates that targeted activation engineering can steer LLaMA 3.1-8B to exhibit more human-like emotional nuances.
- Score: 10.014248704653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate increasing conversational fluency, yet instilling them with nuanced, human-like emotional expression remains a significant challenge. Current alignment techniques often address surface-level output or require extensive fine-tuning. This paper demonstrates that targeted activation engineering can steer LLaMA 3.1-8B to exhibit more human-like emotional nuances. We first employ attribution patching to identify causally influential components, to find a key intervention locus by observing activation patterns during diagnostic conversational tasks. We then derive emotional expression vectors from the difference in the activations generated by contrastive text pairs (positive vs. negative examples of target emotions). Applying these vectors to new conversational prompts significantly enhances emotional characteristics: steered responses show increased positive sentiment (e.g., joy, trust) and more frequent first-person pronoun usage, indicative of greater personal engagement. Our findings offer a precise and interpretable method for controlling specific emotional attributes in LLMs, contributing to developing more aligned and empathetic conversational AI.
Related papers
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.<n>We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.<n>Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.<n>Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
This study is the first to explore the potential of Large Language Models (LLMs) in recognizing ambiguous emotions.<n>We design zero-shot and few-shot prompting and incorporate past dialogue as context information for ambiguous emotion recognition.
arXiv Detail & Related papers (2024-09-26T23:25:21Z) - Recognizing Emotion Regulation Strategies from Human Behavior with Large Language Models [44.015651538470856]
Human emotions are often not expressed directly, but regulated according to internal processes and social display rules.
No method to automatically classify different emotion regulation strategies in a cross-user scenario exists.
We make use of the recently introduced textscDeep corpus for modeling the social display of the emotion shame.
A fine-tuned Llama2-7B model is able to classify the utilized emotion regulation strategy with high accuracy.
arXiv Detail & Related papers (2024-08-08T12:47:10Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
We propose a new task "Emotion Deducing Explanation in Dialogues" (EDEN)
EDEN recognizes emotion and causes in an explicitly thinking way.
It can help Large Language Models (LLMs) achieve better recognition of emotions and causes.
arXiv Detail & Related papers (2024-06-07T08:58:29Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
Causal Emotion Entailment (CEE) aims to identify the causal utterances in a conversation that stimulate the emotions expressed in a target utterance.
Current works in CEE mainly focus on modeling semantic and emotional interactions in conversations.
We introduce a step-by-step reasoning method, Emotion-Cause Reasoning Chain (ECR-Chain), to infer the stimulus from the target emotional expressions in conversations.
arXiv Detail & Related papers (2024-05-17T15:45:08Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
We take the first step towards exploring the ability of Large Language Models to understand emotional stimuli.
Our experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts.
Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks.
arXiv Detail & Related papers (2023-07-14T00:57:12Z) - Learning Emotional Representations from Imbalanced Speech Data for
Speech Emotion Recognition and Emotional Text-to-Speech [1.4986031916712106]
Speech emotional representations play a key role in Speech Emotion Recognition (SER) and Emotional Text-To-Speech (TTS) tasks.
Models might overfit to the majority Neutral class and fail to produce robust and effective emotional representations.
We use augmentation approaches to train the model and enable it to extract effective and generalizable emotional representations from imbalanced datasets.
arXiv Detail & Related papers (2023-06-09T07:04:56Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Detecting Emotion Primitives from Speech and their use in discerning
Categorical Emotions [16.886826928295203]
Emotion plays an essential role in human-to-human communication, enabling us to convey feelings such as happiness, frustration, and sincerity.
This work investigated how emotion primitives can be used to detect categorical emotions such as happiness, disgust, contempt, anger, and surprise from neutral speech.
Results indicated that arousal, followed by dominance was a better detector of such emotions.
arXiv Detail & Related papers (2020-01-31T03:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.