Speechless: Speech Instruction Training Without Speech for Low Resource Languages
- URL: http://arxiv.org/abs/2505.17417v1
- Date: Fri, 23 May 2025 03:05:47 GMT
- Title: Speechless: Speech Instruction Training Without Speech for Low Resource Languages
- Authors: Alan Dao, Dinh Bach Vu, Huy Hoang Ha, Tuan Le Duc Anh, Shreyas Gopal, Yue Heng Yeo, Warren Keng Hoong Low, Eng Siong Chng, Jia Qi Yip,
- Abstract summary: A scarcity of speech instruction data is essential for fine-tuning large language models to understand and execute spoken commands.<n>Our novel approach addresses this challenge by halting synthesis at the semantic representation level, bypassing the need for TTS.<n>We achieve this by aligning synthetic semantic representations with the pre-trained Whisper encoder, enabling an LLM to be fine-tuned on text instructions while maintaining the ability to understand spoken instructions during inference.
- Score: 14.223895501862811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of voice assistants powered by large language models (LLM) has highlighted a need for speech instruction data to train these systems. Despite the abundance of speech recognition data, there is a notable scarcity of speech instruction data, which is essential for fine-tuning models to understand and execute spoken commands. Generating high-quality synthetic speech requires a good text-to-speech (TTS) model, which may not be available to low resource languages. Our novel approach addresses this challenge by halting synthesis at the semantic representation level, bypassing the need for TTS. We achieve this by aligning synthetic semantic representations with the pre-trained Whisper encoder, enabling an LLM to be fine-tuned on text instructions while maintaining the ability to understand spoken instructions during inference. This simplified training process is a promising approach to building voice assistant for low-resource languages.
Related papers
- ProsodyLM: Uncovering the Emerging Prosody Processing Capabilities in Speech Language Models [70.56468982313834]
We propose ProsodyLM, which introduces a simple tokenization scheme amenable to learning prosody.<n>We find that ProsodyLM can learn surprisingly diverse emerging prosody processing capabilities through pre-training alone.
arXiv Detail & Related papers (2025-07-27T00:59:01Z) - Unlocking Speech Instruction Data Potential with Query Rewriting [26.134056897363557]
End-to-end Large Speech Language Models(textbfLSLMs) demonstrate strong potential in response latency and speech comprehension capabilities.<n>However, the ability to follow speech instructions has not been fully realized due to the lack of datasets and heavily biased training tasks.<n>We propose a query rewriting framework with multi-LLM knowledge fusion, employing multiple agents to annotate and validate the synthesized speech.
arXiv Detail & Related papers (2025-07-11T13:55:45Z) - DeSTA2: Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)<n>We present a simple yet effective automatic process for creating speech-text pair data.<n>Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - Instruction-Following Speech Recognition [21.591086644665197]
We introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions.
Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring Large Language Models or pre-trained speech modules.
arXiv Detail & Related papers (2023-09-18T14:59:10Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - Textless Unit-to-Unit training for Many-to-Many Multilingual Speech-to-Speech Translation [65.13824257448564]
This paper proposes a textless training method for many-to-many multilingual speech-to-speech translation.
By treating the speech units as pseudo-text, we can focus on the linguistic content of the speech.
We demonstrate that the proposed UTUT model can be effectively utilized not only for Speech-to-Speech Translation (S2ST) but also for multilingual Text-to-Speech Synthesis (T2S) and Text-to-Speech Translation (T2ST)
arXiv Detail & Related papers (2023-08-03T15:47:04Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
We propose a unified-modal speech-unit-text pre-training model, SpeechUT, to connect the representations of a speech encoder and a text decoder with a shared unit encoder.
Our proposed SpeechUT is fine-tuned and evaluated on automatic speech recognition (ASR) and speech translation (ST) tasks.
arXiv Detail & Related papers (2022-10-07T17:57:45Z) - Guided-TTS:Text-to-Speech with Untranscribed Speech [22.548875263927396]
We present Guided-TTS, a high-quality TTS model that learns to generate speech from untranscribed speech data.
For text-to-speech synthesis, we guide the generative process of the unconditional DDPM via phoneme classification to produce mel-spectrograms.
arXiv Detail & Related papers (2021-11-23T10:05:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.