VEAttack: Downstream-agnostic Vision Encoder Attack against Large Vision Language Models
- URL: http://arxiv.org/abs/2505.17440v1
- Date: Fri, 23 May 2025 03:46:04 GMT
- Title: VEAttack: Downstream-agnostic Vision Encoder Attack against Large Vision Language Models
- Authors: Hefei Mei, Zirui Wang, Shen You, Minjing Dong, Chang Xu,
- Abstract summary: Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation.<n>Existing effective attacks always focus on task-specific white-box settings.<n>We propose a simple yet effective Vision Attack (VEAttack) which targets the vision encoder of LVLMs only.
- Score: 33.120141513366136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation, yet their vulnerability to adversarial attacks raises significant robustness concerns. While existing effective attacks always focus on task-specific white-box settings, these approaches are limited in the context of LVLMs, which are designed for diverse downstream tasks and require expensive full-model gradient computations. Motivated by the pivotal role and wide adoption of the vision encoder in LVLMs, we propose a simple yet effective Vision Encoder Attack (VEAttack), which targets the vision encoder of LVLMs only. Specifically, we propose to generate adversarial examples by minimizing the cosine similarity between the clean and perturbed visual features, without accessing the following large language models, task information, and labels. It significantly reduces the computational overhead while eliminating the task and label dependence of traditional white-box attacks in LVLMs. To make this simple attack effective, we propose to perturb images by optimizing image tokens instead of the classification token. We provide both empirical and theoretical evidence that VEAttack can easily generalize to various tasks. VEAttack has achieved a performance degradation of 94.5% on image caption task and 75.7% on visual question answering task. We also reveal some key observations to provide insights into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention differential, 3) M\"obius band in transfer attack, 4) low sensitivity to attack steps. The code is available at https://github.com/hfmei/VEAttack-LVLM
Related papers
- VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning [95.89543460132413]
Vision-language models (VLMs) have improved performance by increasing the number of visual tokens.<n>However, most real-world scenarios do not require such an extensive number of visual tokens.<n>We present a new paradigm for visual token compression, namely, VisionThink.
arXiv Detail & Related papers (2025-07-17T17:59:55Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - Image Corruption-Inspired Membership Inference Attacks against Large Vision-Language Models [27.04420374256226]
Large vision-language models (LVLMs) have demonstrated outstanding performance in many downstream tasks.<n>It is important to detect whether an image is used to train the LVLM.<n>Recent studies have investigated membership inference attacks (MIAs) against LVLMs.
arXiv Detail & Related papers (2025-06-14T04:22:36Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - Break the Visual Perception: Adversarial Attacks Targeting Encoded Visual Tokens of Large Vision-Language Models [15.029014337718849]
Large vision-language models (LVLMs) integrate visual information into large language models, showcasing remarkable multi-modal conversational capabilities.
In general, LVLMs rely on vision encoders to transform images into visual tokens, which are crucial for the language models to perceive image contents effectively.
We propose a non-targeted attack method referred to as VT-Attack, which constructs adversarial examples from multiple perspectives.
arXiv Detail & Related papers (2024-10-09T09:06:56Z) - AnyAttack: Towards Large-scale Self-supervised Adversarial Attacks on Vision-language Models [39.34959092321762]
Vision-Language Models (VLMs) are vulnerable to image-based adversarial attacks.<n>We present AnyAttack, a self-supervised framework that transcends the limitations of conventional attacks.
arXiv Detail & Related papers (2024-10-07T09:45:18Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
We introduce Visual Tokens Withdrawal (VTW), a plug-and-play module to boost MLLMs for rapid inference.<n>VTW strategically withdraws vision tokens at a certain layer, enabling only text tokens to engage in subsequent layers.<n>Our approach can cut computational overhead by over 40% across diverse multimodal tasks while maintaining performance.
arXiv Detail & Related papers (2024-05-09T14:38:53Z) - VL-Trojan: Multimodal Instruction Backdoor Attacks against
Autoregressive Visual Language Models [65.23688155159398]
Autoregressive Visual Language Models (VLMs) showcase impressive few-shot learning capabilities in a multimodal context.
Recently, multimodal instruction tuning has been proposed to further enhance instruction-following abilities.
Adversaries can implant a backdoor by injecting poisoned samples with triggers embedded in instructions or images.
We propose a multimodal instruction backdoor attack, namely VL-Trojan.
arXiv Detail & Related papers (2024-02-21T14:54:30Z) - Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance [51.30560006045442]
Image-gRounded guIdaNcE (MARINE) is a framework that is both training-free and API-free.<n>MARINE effectively and efficiently reduces object hallucinations during inference by introducing image-grounded guidance to LVLMs.<n>Our framework's flexibility further allows for the integration of multiple vision models, enabling more reliable and robust object-level guidance.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - Vision-LLMs Can Fool Themselves with Self-Generated Typographic Attacks [58.10730906004818]
Typographic attacks, adding misleading text to images, can deceive vision-language models (LVLMs)<n>Our experiments show these attacks significantly reduce classification performance by up to 60%.
arXiv Detail & Related papers (2024-02-01T14:41:20Z) - InstructTA: Instruction-Tuned Targeted Attack for Large Vision-Language Models [13.21813503235793]
Large vision-language models (LVLMs) have demonstrated their incredible capability in image understanding and response generation.
In this paper, we formulate a novel and practical targeted attack scenario that the adversary can only know the vision encoder of the victim LVLM.
We propose an instruction-tuned targeted attack (dubbed textscInstructTA) to deliver the targeted adversarial attack on LVLMs with high transferability.
arXiv Detail & Related papers (2023-12-04T13:40:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.