Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance
- URL: http://arxiv.org/abs/2402.08680v2
- Date: Wed, 11 Jun 2025 21:33:21 GMT
- Title: Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance
- Authors: Linxi Zhao, Yihe Deng, Weitong Zhang, Quanquan Gu,
- Abstract summary: Image-gRounded guIdaNcE (MARINE) is a framework that is both training-free and API-free.<n>MARINE effectively and efficiently reduces object hallucinations during inference by introducing image-grounded guidance to LVLMs.<n>Our framework's flexibility further allows for the integration of multiple vision models, enabling more reliable and robust object-level guidance.
- Score: 51.30560006045442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Large Vision-Language Models (LVLMs) has increasingly highlighted the critical issue of their tendency to hallucinate non-existing objects in the images. To address this issue, previous works focused on using specially curated datasets or powerful LLMs to rectify the outputs of LVLMs. However, these approaches require either costly training or fine-tuning, or API access to proprietary LLMs for post-generation correction. In response to these limitations, we propose Mitigating hallucinAtion via image-gRounded guIdaNcE (MARINE), a framework that is both training-free and API-free. MARINE effectively and efficiently reduces object hallucinations during inference by introducing image-grounded guidance to LVLMs. This is achieved by leveraging open-source vision models to extract object-level information, thereby enhancing the precision of LVLM-generated content. Our framework's flexibility further allows for the integration of multiple vision models, enabling more reliable and robust object-level guidance. Through comprehensive evaluations across 5 popular LVLMs with diverse evaluation metrics and benchmarks, we demonstrate the effectiveness of MARINE, which even outperforms existing fine-tuning-based methods. Remarkably, it reduces hallucinations consistently in GPT-4V-assisted evaluation while maintaining the detailedness of LVLMs' generations. We release our code at https://github.com/Linxi-ZHAO/MARINE.
Related papers
- Modality Bias in LVLMs: Analyzing and Mitigating Object Hallucination via Attention Lens [0.0]
Large vision-language models (LVLMs) have demonstrated remarkable multimodal comprehension and reasoning capabilities.<n>LVLMs tend to over-rely on textual prompts and internal knowledge of large language models, generating descriptions inconsistent with visual cues.<n>We propose a training-free method to mitigate object hallucination.
arXiv Detail & Related papers (2025-08-04T13:40:59Z) - An LLM-Empowered Low-Resolution Vision System for On-Device Human Behavior Understanding [7.588486998437453]
We propose a novel, labor-saving system, Llambda, designed to support low-resolution HBU.<n>The core idea is to leverage limited labeled data and a large amount of unlabeled data to guide LLMs in generating informative captions.<n>Llambda outperforms several state-of-the-art LVLM systems up to $40.03%$ on average Bert-Score.
arXiv Detail & Related papers (2025-05-03T08:46:04Z) - CutPaste&Find: Efficient Multimodal Hallucination Detector with Visual-aid Knowledge Base [29.477973983931083]
We propose CutPaste&Find, a lightweight and training-free framework for detecting hallucinations in LVLM-generated outputs.<n>At the core of our framework is a Visual-aid Knowledge Base that encodes rich entity-attribute relationships and associated image representations.<n>We introduce a scaling factor to refine similarity scores, mitigating the issue of suboptimal alignment values even for ground-truth image-text pairs.
arXiv Detail & Related papers (2025-02-18T07:06:36Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision.
We propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations.
We show that OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench.
arXiv Detail & Related papers (2024-12-12T18:55:18Z) - A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Rethinking VLMs and LLMs for Image Classification [6.550471260627169]
Large Language Models (LLMs) are increasingly being merged with Visual Language Models (VLMs) to enable new capabilities.
We show that, for object and scene recognition, VLMs that do not leverage LLMs can achieve better performance than VLMs that do.
We propose a pragmatic solution: a lightweight fix involving a relatively small LLM that efficiently routes visual tasks to the most suitable model for the task.
arXiv Detail & Related papers (2024-10-03T23:40:21Z) - CLIP-DPO: Vision-Language Models as a Source of Preference for Fixing Hallucinations in LVLMs [37.98496239547762]
Large Vision Language Models are prone to hallucinating details like objects and their properties or relations, limiting their real-world deployment.
We present CLIP-DPO, a preference optimization method that leverages contrastively pre-trained Vision-Language (VL) embedding models, such as CLIP, for DPO-based optimization of LVLMs.
arXiv Detail & Related papers (2024-08-19T21:56:20Z) - Mitigating Hallucinations in Large Vision-Language Models (LVLMs) via Language-Contrastive Decoding (LCD) [13.430637580980164]
Large Vision-Language Models (LVLMs) are an extension of Large Language Models (LLMs) that facilitate processing both image and text inputs, expanding AI capabilities.
Our study introduces a Language Contrastive Decoding (LCD) algorithm that adjusts LVLM outputs based on Large Language Models distribution confidence levels.
Our method effectively improves LVLMs without needing complex post-processing or retraining, and is easily applicable to different models.
arXiv Detail & Related papers (2024-08-06T08:10:34Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [49.32669226551026]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning [67.0609518552321]
We propose to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models.
By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner.
arXiv Detail & Related papers (2023-12-05T07:29:14Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - CIEM: Contrastive Instruction Evaluation Method for Better Instruction
Tuning [8.217445461627797]
Vision-Language Models (VLMs) may generate incorrect perception information when doing downstream applications, for example, captioning a non-existent entity.
To address the hallucination phenomenon, we introduce a Contrastive Instruction Evaluation Method (CIEM) and Contrastive Instruction Tuning (CIT)
We pinpoint the hallucination issues commonly present in existing VLMs, the disability of the current instruction-tuning dataset to handle the hallucination phenomenon and the superiority of CIT-tuned VLMs over both CIEM and public datasets.
arXiv Detail & Related papers (2023-09-05T15:06:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.