Real-time Traffic Accident Anticipation with Feature Reuse
- URL: http://arxiv.org/abs/2505.17449v1
- Date: Fri, 23 May 2025 04:09:26 GMT
- Title: Real-time Traffic Accident Anticipation with Feature Reuse
- Authors: Inpyo Song, Jangwon Lee,
- Abstract summary: We introduce a lightweight framework that capitalizes on intermediate features from a single pre-trained object detector.<n>RARE achieves a 4-8 times speedup over existing approaches on the DAD and CCD benchmarks.<n>Despite its reduced complexity, it attains state-of-the-art Average Precision and reliably anticipates imminent collisions in real time.
- Score: 2.9803250365852443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of anticipating traffic accidents, which aims to forecast potential accidents before they happen. Real-time anticipation is crucial for safe autonomous driving, yet most methods rely on computationally heavy modules like optical flow and intermediate feature extractors, making real-world deployment challenging. In this paper, we thus introduce RARE (Real-time Accident anticipation with Reused Embeddings), a lightweight framework that capitalizes on intermediate features from a single pre-trained object detector. By eliminating additional feature-extraction pipelines, RARE significantly reduces latency. Furthermore, we introduce a novel Attention Score Ranking Loss, which prioritizes higher attention on accident-related objects over non-relevant ones. This loss enhances both accuracy and interpretability. RARE demonstrates a 4-8 times speedup over existing approaches on the DAD and CCD benchmarks, achieving a latency of 13.6ms per frame (73.3 FPS) on an RTX 6000. Moreover, despite its reduced complexity, it attains state-of-the-art Average Precision and reliably anticipates imminent collisions in real time. These results highlight RARE's potential for safety-critical applications where timely and explainable anticipation is essential.
Related papers
- Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
We introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods.
We propose the Binary Adaptive Loss for Early Anticipation (BA-LEA) to address the prevalent challenge of skewed data distribution in traffic accident datasets.
arXiv Detail & Related papers (2024-09-02T13:46:25Z) - CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
Accurately and promptly predicting accidents among surrounding traffic agents from camera footage is crucial for the safety of autonomous vehicles (AVs)
This study introduces a novel accident anticipation framework for AVs, termed CRASH.
It seamlessly integrates five components: object detector, feature extractor, object-aware module, context-aware module, and multi-layer fusion.
Our model surpasses existing top baselines in critical evaluation metrics like Average Precision (AP) and mean Time-To-Accident (mTTA)
arXiv Detail & Related papers (2024-07-25T04:12:49Z) - AccidentBlip: Agent of Accident Warning based on MA-former [24.81148840857782]
AccidentBlip is a vision-only framework that employs our self-designed Motion Accident Transformer (MA-former) to process each frame of video.<n> AccidentBlip achieves performance in both accident detection and prediction tasks on the DeepAccident dataset.<n>It also outperforms current SOTA methods in V2V and V2X scenarios, demonstrating a superior capability to understand complex real-world environments.
arXiv Detail & Related papers (2024-04-18T12:54:25Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Forecasting Particle Accelerator Interruptions Using Logistic LASSO
Regression [62.997667081978825]
Unforeseen particle accelerator interruptions, also known as interlocks, lead to abrupt operational changes despite being necessary safety measures.
We propose a simple yet powerful binary classification model aiming to forecast such interruptions.
The model is formulated as logistic regression penalized by at least absolute shrinkage and selection operator.
arXiv Detail & Related papers (2023-03-15T23:11:30Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - StrObe: Streaming Object Detection from LiDAR Packets [73.27333924964306]
Rolling shutter LiDARs emitted as a stream of packets, each covering a sector of the 360deg coverage.
Modern perception algorithms wait for the full sweep to be built before processing the data, which introduces an additional latency.
In this paper we propose StrObe, a novel approach that minimizes latency by ingesting LiDAR packets and emitting a stream of detections without waiting for the full sweep to be built.
arXiv Detail & Related papers (2020-11-12T14:57:44Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z) - Global Feature Aggregation for Accident Anticipation [8.57961305383434]
We propose a novel Feature Aggregation (FA) block that refines each object's features by computing a weighted sum of the features of all objects in a frame.
We use FA block along with Long Short Term Memory (LSTM) network to anticipate accidents in the video sequences.
arXiv Detail & Related papers (2020-06-16T06:17:15Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.