CLIMB: Class-imbalanced Learning Benchmark on Tabular Data
- URL: http://arxiv.org/abs/2505.17451v1
- Date: Fri, 23 May 2025 04:21:03 GMT
- Title: CLIMB: Class-imbalanced Learning Benchmark on Tabular Data
- Authors: Zhining Liu, Zihao Li, Ze Yang, Tianxin Wei, Jian Kang, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong,
- Abstract summary: Class-imbalanced learning (CIL) is important in many real-world applications where the minority class holds the critical but rare outcomes.<n>In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning.<n> CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms.
- Score: 68.07599497425267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-imbalanced learning (CIL) on tabular data is important in many real-world applications where the minority class holds the critical but rare outcomes. In this paper, we present CLIMB, a comprehensive benchmark for class-imbalanced learning on tabular data. CLIMB includes 73 real-world datasets across diverse domains and imbalance levels, along with unified implementations of 29 representative CIL algorithms. Built on a high-quality open-source Python package with unified API designs, detailed documentation, and rigorous code quality controls, CLIMB supports easy implementation and comparison between different CIL algorithms. Through extensive experiments, we provide practical insights on method accuracy and efficiency, highlighting the limitations of naive rebalancing, the effectiveness of ensembles, and the importance of data quality. Our code, documentation, and examples are available at https://github.com/ZhiningLiu1998/imbalanced-ensemble.
Related papers
- EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications.<n>We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets.
arXiv Detail & Related papers (2024-04-15T17:49:16Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
We introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data.
Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%.
arXiv Detail & Related papers (2023-12-26T08:14:46Z) - Review of Methods for Handling Class-Imbalanced in Classification
Problems [0.0]
In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples.
The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning.
arXiv Detail & Related papers (2022-11-10T10:07:10Z) - Balanced Contrastive Learning for Long-Tailed Visual Recognition [32.789465918318925]
Real-world data typically follow a long-tailed distribution, where a few majority categories occupy most of the data.
In this paper, we focus on representation learning for imbalanced data.
We propose a novel loss for balanced contrastive learning (BCL)
arXiv Detail & Related papers (2022-07-19T03:48:59Z) - Class-Aware Contrastive Semi-Supervised Learning [51.205844705156046]
We propose a general method named Class-aware Contrastive Semi-Supervised Learning (CCSSL) to improve pseudo-label quality and enhance the model's robustness in the real-world setting.
Our proposed CCSSL has significant performance improvements over the state-of-the-art SSL methods on the standard datasets CIFAR100 and STL10.
arXiv Detail & Related papers (2022-03-04T12:18:23Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - A Comparative Study of Calibration Methods for Imbalanced Class
Incremental Learning [10.680349952226935]
We study the problem of learning incrementally from imbalanced datasets.
We use a bounded memory to store exemplars of old classes across incremental states.
We show that simpler vanilla fine tuning is a stronger backbone for imbalanced incremental learning algorithms.
arXiv Detail & Related papers (2022-02-01T12:56:17Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - GLISTER: Generalization based Data Subset Selection for Efficient and
Robust Learning [11.220278271829699]
We introduce Glister, a GeneraLIzation based data Subset selecTion for Efficient and Robust learning framework.
We propose an iterative online algorithm Glister-Online, which performs data selection iteratively along with the parameter updates.
We show that our framework improves upon state of the art both in efficiency and accuracy (in cases (a) and (c)) and is more efficient compared to other state-of-the-art robust learning algorithms.
arXiv Detail & Related papers (2020-12-19T08:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.