論文の概要: HiLAB: A Hybrid Inverse-Design Framework
- arxiv url: http://arxiv.org/abs/2505.17491v1
- Date: Fri, 23 May 2025 05:34:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.839439
- Title: HiLAB: A Hybrid Inverse-Design Framework
- Title(参考訳): HiLAB: ハイブリッドな逆設計フレームワーク
- Authors: Reza Marzban, Hamed Abiri, Raphael Pestourie, Ali Adibi,
- Abstract要約: HiLABはナノフォトニック構造の逆設計のための新しいパラダイムである。
シミュレーションコストを削減した多様なフリーフォーム構成を生成することで、多機能デバイス設計に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization) is a new paradigm for inverse design of nanophotonic structures. Combining early-terminated topological optimization (TO) with a Vision Transformer-based variational autoencoder (VAE) and a Bayesian search, HiLAB addresses multi-functional device design by generating diverse freeform configurations at reduced simulation costs. Shortened adjoint-driven TO runs, coupled with randomized physical parameters, produce robust initial structures. These structures are compressed into a compact latent space by the VAE, enabling Bayesian optimization to co-optimize geometry and physical hyperparameters. Crucially, the trained VAE can be reused for alternative objectives or constraints by adjusting only the acquisition function. Compared to conventional TO pipelines prone to local optima, HiLAB systematically explores near-global optima with considerably fewer electromagnetic simulations. Even after accounting for training overhead, the total number of full simulations decreases by over an order of magnitude, accelerating the discovery of fabrication-friendly devices. Demonstrating its efficacy, HiLAB is used to design an achromatic beam deflector for red, green, and blue wavelengths, achieving balanced diffraction efficiencies of ~25% while mitigating chromatic aberrations-a performance surpassing existing demonstrations. Overall, HiLAB provides a flexible platform for robust, multi-parameter photonic designs and rapid adaptation to next-generation nanophotonic challenges.
- Abstract(参考訳): HiLAB (Hybrid inverse-design with Latent-space learning, Adjoint-based partial optimizations, and Bayesian optimization) は、ナノフォトニック構造の逆設計のための新しいパラダイムである。
初期終端位相最適化(TO)とビジョントランスフォーマーベースの変分オートエンコーダ(VAE)とベイズ探索を組み合わせることで、HiLABはシミュレーションコストを削減して多様なフリーフォーム構成を生成することで多機能デバイス設計に対処する。
アドジョイント駆動のTO実行が短縮され、ランダム化された物理パラメータが組み合わされ、堅牢な初期構造が生成される。
これらの構造は、VAEによってコンパクトな潜在空間に圧縮され、ベイズ最適化により幾何学と物理ハイパーパラメータを共最適化することができる。
重要なことは、訓練されたVAEは、取得関数のみを調整することで、代替目的や制約のために再利用することができる。
従来のTOパイプラインと比較して、HiLABは、かなり少ない電磁シミュレーションで、準球に近い最適化を体系的に探索する。
トレーニングのオーバーヘッドを考慮しても、完全なシミュレーションの総数は桁違いに減少し、製造に適した装置の発見が加速する。
有効性を実証するために、HiLABは赤、緑、青の波長用の無彩色ビーム偏向器を設計し、彩色収差を緩和しながら約25%のバランスの取れた回折効率を実現している。
全体として、HiLABは、堅牢でマルチパラメータのフォトニックデザインと、次世代のナノフォトニック課題への迅速な適応のための柔軟なプラットフォームを提供する。
関連論文リスト
- Efficient Design of Compliant Mechanisms Using Multi-Objective Optimization [50.24983453990065]
そこで本研究では,大きな角状脳卒中を許容できる適合型クロスヒンジ機構の合成について述べる。
キネトスタティックな性能測定に基づいて,多目的最適化問題を定式化する。
論文 参考訳(メタデータ) (2025-04-23T06:29:10Z) - Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
本稿では,複雑な工学系の非線形挙動を効果的にモデル化する物理インフォームドディープONet(PIDON)アーキテクチャを提案する。
3倍の高速化を実現した航空宇宙グレード複合材料硬化プロセスの最適化における本フレームワークの有効性を実証する。
提案モデルには,高度工学およびディジタルツインシステムにおける幅広い応用のための,スケーラブルで効率的な最適化ツールとして使用される可能性がある。
論文 参考訳(メタデータ) (2025-02-17T07:11:46Z) - Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators [5.565261874218803]
本稿では, 粒子加速器の深部微分可能強化学習アルゴリズムを用いてMOO問題の解法における微分可能性の効果を示す。
基礎となる問題は、個々の状態と行動の両方に厳密な制約を課し、ビームのエネルギー要求に対する累積的(グローバル)制約を課している。
論文 参考訳(メタデータ) (2024-11-07T15:55:05Z) - Bayesian Experimental Design via Contrastive Diffusions [2.2186678387006435]
実験設計(BOED)は、一連の実験の実行コストを削減する強力なツールである。
コスト効率の良いサンプリング特性を持つプール勾配分布を導入し、新しいEIG式によるEIGコントラスト後部へのトラクタアクセスを提供する。
BOEDフレームワークに生成モデルを組み込むことで、適用範囲を拡大し、非現実的なシナリオでの利用を拡大する。
論文 参考訳(メタデータ) (2024-10-15T17:53:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Accelerating Bayesian Optimization for Biological Sequence Design with
Denoising Autoencoders [28.550684606186884]
我々は,識別可能なマルチタスクガウスプロセスヘッドを用いて,デノナイズドオートエンコーダを共同で訓練する手法を開発した。
我々はZINCデータセットに基づく小分子上でLaMBOを評価し,蛍光タンパク質をターゲットとした新しい大規模分子タスクを導入する。
論文 参考訳(メタデータ) (2022-03-23T21:58:45Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
オーバー・ザ・エア・コンピューティング・アルゴリズム(FL)は,複数のアクセスチャネルの波形重畳特性を利用して高速なモデルアグリゲーションを実現することができる。
本稿では,AirCompベースのFLのための高速かつ信頼性の高いモデルアグリゲーションを実現するための2段階最適化フレームワークを提案する。
シミュレーションの結果,提案するフレームワークとIRSの展開により,ベースラインアルゴリズムよりもトレーニング損失が低く,FL予測精度も高いことがわかった。
論文 参考訳(メタデータ) (2020-11-10T11:29:57Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。